Public Health Agency of Canada CORONAVIRUS HOTLINE 1-833-784-4397

Facebook  Twitter  LinkedIn  youtube

Members Area
Resources Resources Open
Chapters Chapters Close
Site Map Site Map Open
Resources / Publications

Coronavirus (COVID-19)


Coronaviruses are a large family of viruses that may cause a range of illnesses in humans, from the common cold to SARS. Viruses of this family also cause a number of animal diseases.

Pandemic Coronavirus (COVID-19)

On 31 December 2019, the WHO China Country Office was informed of cases of pneumonia of unknown etiology detected in Wuhan City, Hubei Province of China. The outbreak began in a seafood and poultry market in Wuhan, a city of 11 million in central China. Like SARS and MERS-CoV, the newly detected coronavirus has a zoonotic source, however, human to human transmission has been confirmed. On March 11, 2020 the WHO declared COVID-19 viral disease a pandemic.

Global Cases COVID-19 Cases

As of April 3, 2020 total of 1,030,628 confirmed cases caused by the novel Coronavirus COVID-19 and 54,369 deaths were reported. At this time 181 countries are reporting cases of the novel Coronavirus. For a full listing of affected countries refer to Coronavirus (COVID-19) Global Cases (Johns Hopkins University)

Source: Coronavirus (COVID-19) Global Cases (Johns Hopkins University).

Other Global COVID-19 Case Trackers:

Canadian Cases COVID-19

As of April 3, 2020 total of 11,283 confirmed cases caused by the novel Coronavirus COVID-19 and 138 reported deaths in Canada. An Epidemiological Summary of COVID-19 Cases in Canada is avialable.

For real time information refer to the Coronavirus disease (COVID-19): Outbreak update from the Public Health Agency of Canada or to COVID-19 Canadian Outbreak Tracker (Esri Canada).

PHAC Coronavirus Map of Canada

Provided by: Public Health Agency of Canada

Areas in Canada with cases of COVID-19 as of April 3, 2020
Province, territory or other Number of confirmed cases Number of probable cases Number of deaths
Canada 11,732 15 152
Newfoundland and Labrador 183 0 1
Prince Edward Island 22 0 0
Nova Scotia 193 0 0
New Brunswick 91 0 0
Quebec 5,518 0 36
Ontario 3,255 0 67
Manitoba 152 15 1
Saskatchewan 206 0 3
Alberta 968 0 13
British Columbia 1,121 0 31
Yukon 6 0 0
Northwest Territories 4 0 0
Nunavut 0 0 0
Repatriated travellers 13 0 0

Source: Coronavirus disease (COVID-19) Government of Canada

The first human infections in China must have occurred in November 2019 or earlier. The first 59 suspected cases at the end of December 2019 and early January 2020 were admitted to Jinyintan Hospital, which was specially designated to isolate them.

On January 23, 2020, Chinese authorities closed off the city, canceling planes and trains leaving Wuhan and suspending buses, subways and ferry services.  A second city in China, Huanggang was also placed in lockdown. On January 24, 2020 travel was restricted to a total of 10 cities, affecting 50 million people. Public bus, railway and airline operations were also suspended in these cities. On January 30, 2020 the World Health Organization (WHO) announced that the novel coronavirus is considered a public health emergency of international concern (PHEIC). The International Health Regulations Emergency Committee announcement this decision due to concern for further global spread after person-to-person spread of the novel coronavirus (COVID-19) was confirmed in 4 countries (Germany, Japan, Vietnam and the United States) outside of China. As for February 5, 2020, forty major airlines around the world have canceled or reduced their flights to China until as late as March amid the coronavirus outbreak. On February 19 and 21, 2020; cases were reported in Iran and Italy respectively with no known direct link to Mainland China. On March 9, 2020 Italy expanded the quarantine from the Lombardy region to the entire country, as Italy’s case count surged. People throughout the country of 60 million were ordered not to travel other than for work or emergencies. South Korea and Iran have also imposed travel restrictions. On March 11, 2020 the WHO declared COVID-19 viral disease a pandemic. As of April 1, 2020 the virus had spread to 180 countries with travel bans and restrictions implemented in many countries combined with various social distancing measures (ie. school, public space closures) in an effort to slow COVID-19 spread and flatten the epidemiological curve.

Preliminary calculations for the average number of infections that each infected person may go on to cause, known as R0. This is estimated to be 2.0 to 3.0 people per infected person. In comparison to seasonal flu, which usually has an R0 of around 1.3.  

The World Health Organization announced that the fatality rate in Wuhan, China, considered the epicenter of the outbreak, is between 2% and 4%. Outside of Wuhan, it is thought to be closer to 0.7%. In a recent JAMA paper The overall case-fatality rate was 2.3%. No deaths occurred in those aged 9 years and younger, in those aged 70 to 79 years had an 8% fatality rate and those aged 80 years and older had a fatality rate of 14.8%. Children made up a 2.4% of the cases and almost none was severely ill. The fatality rate was 49% among critical cases, and elevated among those with preexisting conditions: 10.5% for people with cardiovascular disease, 7.3% for diabetes, 6.3% for chronic respiratory disease, 6% for hypertension, and 5.6% for cancer.

A conjoint review done by WHO and Chinese scientists has found that 80% of infected people had mild to moderate disease, 13.8% had severe symptoms, and 6.1% had life-threatening episodes of respiratory failure, septic shock, or organ failure. No deaths were reported among mild and severe cases. For the mild and moderate cases, it took 2 weeks on average to recover.

Currently, randomized controlled clinical trials are being conducted to investigate the safety and efficacy of its investigational antiviral compound remdesivir (GS-5734) against the novel coronavirus (COVID-19).

Surveillance for COVID-19 Infection

Provincial/Territorial public health authorities should report confirmed and probable cases of COVID-19 nationally to the Public Health Agency of Canada within 24 hours of their own notification.

PHAC Interim national case definition: Novel Coronavirus (COVID-19)

Probable Case:

A person:

  • with fever (over 38 degrees Celsius) and/or new onset of (or exacerbation of chronic) cough AND
  • who meets the COVID-19 exposure criteria AND
  • in whom laboratory diagnosis of COVID-19 is inconclusive, not available, or negative (if specimen quality or timing is suspect) or in whom the laboratory test for COVID-19 was positive but not confirmed by the National Microbiology Laboratory (NML)

Exposure Criteria:

  • Travel to an affected area in the 14 days before onset of illness OR
  • Close contact with a confirmed or probable case of COVID-19 within 14 days before their illness onset OR
  • Close contact with a person with acute respiratory illness who has been to an affected area within 14 days prior to their illness onset OR
  • Laboratory exposure to biological material (e.g. primary clinical specimens, virus culture isolates) known to contain COVID-19.

Symptoms of COVID-19

Illnesses associated with the new coronavirus, named COVID-19, are similar to several respiratory illnesses and include fever, dry cough, sore throat and headache. Less frequent symptoms included coughing sputum or blood, headache and diarrhea. Most cases are considered mild to moderate with a subset experiencing more severe illness with shortness of breath and difficulty breathing.

Reported signs and symptoms include:

  • Fever
  • Coughing 
  • Difficulty breathing 
  • Pneumonia in both lungs

Infection Prevention and Control

Prior to any patient interaction, all healthcare workers (HCWs) have a responsibility to assess the infectious risk posed to themselves and to other patients, visitors, and HCWs. This risk assessment is based on professional judgment about the clinical situation and up-to-date information on how the specific healthcare organization has designed and implemented engineering and administrative controls, along with the availability and use of personal protective equipment (PPE).

Recommendations for infection prevention and control measures for patients presenting with suspected or confirmed infection or co-infection with COVID-19 in acute care settings include:

1. Routine Practices: For all patients, at all times, in all healthcare settings including when performing a point-of-care risk assessment, and adherence to respiratory hygiene and hand hygiene.

2. Contact and Droplet Precautions (should be implemented empirically):

  • Wear gloves and a long-sleeved gown upon entering the patient's room, cubicle or designated bedspace.
  • Wear facial protection (surgical or procedure mask and eye protection, or face shield, or mask with visor attachment) when within two metres of a patient suspected or confirmed to have COVID-19 infection.

3. Airborne Precautions: When performing aerosol-generating medical procedures (AGMPs). A respirator and face/eye protection should be used by all HCWs present in a room where an AGMP is being performed on a patient suspected or confirmed to have COVID-19 infection. Whenever possible, AGMPs should be performed in an airborne infection isolation room.

As information becomes available, these recommendations will be re-evaluated and updated as needed. Refer to WHO Rational use of personal protective equipment for coronavirus disease (COVID-19)

COVID-19 Guidance Documents

Govenment of Canada 


WHO/OMS – Organisation mondiale de la santé.


European Centre for Disease Control

Other Guidelines

Guidance for Funeral Directors (Health Protection and Surveillance Centre)

 Decontamination and Reuse of N95 Filtering Facemasks

Prevention & Management of Skin Damage Related to PPE (NSWOCC and CNA)

Provincial Guidance Documents

Alberta Heath Services

British Columbia Centre for Disease Control

Public Health Ontario

Ontario Health

Gouvernement du Québec

Education and Training

Additional Reading

Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

NOTE: Information on MERS-CoV has been retained for historical purposes only. For current information, refer to the WHO website:

About MERS-CoV [ref: WHO]

In September 2012, a new coronavirus was isolated from a patient in Saudi Arabia [ref ProMed]. Since then, there have been a limited number of human cases identified, clustered mainly in the Arabian Peninsula. This particular strain of coronavirus has not been previously identified in humans. There is very limited information on transmission, severity and clinical impact with only a small number of cases reported thus far. The emergence of this new coronavirus is globally recognized as an important and major challenge for all of the countries which have been affected as well as the rest of the world.

The greatest global concern is about the potential for this new virus to spread. This is partly because the virus has already caused severe disease in multiple countries, although in small numbers. Different clusters seen in multiple countries increasingly support the hypothesis that when there is close contact this novel coronavirus can transmit from person-to-person. This pattern of person-to- person transmission has remained limited to some small clusters and, so far, there is no evidence that this virus has the capacity to sustain generalized transmission in communities. Persons with underlying medical conditions may have increased susceptibility to infection. The incubation period may exceed 10 days in some patients.

Staff working in health care must increase their levels of surveillance about this new infection. There are also some questions that urgently need to be answered including how are people are getting infected, and what are the main risk factors for either infection or development of severe disease. The answers to these questions hold the keys to preventing infection.


 Epidemiology of MERS-CoV

[Ref: WHOUpdated 21 March 2016
NOTE: Cases are classified according to country where infection was acquired

Country Cases Deaths
Saudi Arabia 1,374 575
South Korea 186 36
United Arab Emirates (UAE) 81 9
Jordan 32 10
Qatar 15 6
Oman 9 3
Iran 6 2
Kuwait 4 2
Tunisia 2 0
United Kingdom 2 1
Yemen 1 1
France 1 0
Lebanon 1 0
TOTAL 1,714 645

Since April 2012, there have been 1,714 cases of human infection with MERS-CoV. Several countries in the Middle East have reported cases, including Egypt, Iran, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, the United Arab Emirates (UAE) and Yemen. Cases have also been reported by other countries: Algeria, Bangladesh, France, Germany, Greece, Italy, Malaysia, Thailand, the United Kingdom and South Korea. All of the cases outside of the Middle East have had a direct or indirect connection to the Middle East, with the exception of a cluster in South Korea. Six hundred and forty-five (645) of the 1,714 cases have died (case fatality rate 38%).

In South Korea, the first case was identified on May 20, 2015 with links to the Middle East. This has resulted in the largest outbreak reported outside the Kingdom of Saudi Arabia. Tertiary cases have been reported (i.e., cases with no direct exposure to the index case).

In Tunisia, France and the United Kingdom, there has been limited local transmission among close contacts who had not been to the Middle East but had been in contact with a traveler recently returned from the Middle East. Most clusters reported to date have occurred among family contacts or in a health care setting. Human-to-human transmission occurred in at least some of these clusters, however, the exact mode of transmission is still unknown.

Infection in health care workers accounts for 242 cases (14%).

So far, the source of the virus remains unknown but the pattern of transmission points towards an animal reservoir (e.g., camel) in the Middle East, from which humans sporadically become infected through zoonotic transmission. There is evidence of a seasonal transmission pattern (March-April onwards). Human-to-human transmission between close contacts and in hospital settings has occurred, but there is no evidence of sustained transmission among humans. Secondary cases appear to have a milder disease than that of primary cases.

For more information and current updates:


 Surveillance for MERS-CoV Infection


The Public Health Agency of Canada requests that probable and confirmed cases be reported within 24 hours of being classified as such.

For more information on MERS-CoV surveillance:


 Symptoms of MERS-CoV Infection

All of the laboratory confirmed cases have had respiratory disease as part of the illness, and most have had severe acute respiratory disease requiring hospitalization. Reported clinical features include acute respiratory distress syndrome (ARDS), renal failure requiring hemodialysis, consumptive coagulopathy, and pericarditis. Many patients have also had gastrointestinal symptoms including diarrhea during the course of their illness. One patient, who was immunocompromised, presented with fever, diarrhea and abdominal pain, but had no respiratory symptoms initially; pneumonia was identified incidentally on a radiograph.

The National Institutes of Health has found that a combination of two antiviral drugs, ribavirin and interferon-alpha 2b, can inhibit replication of the virus in cell cultures [Falzarano et al. Inhibition of novel human coronavirus-EMC replication by a combination of interferon-alpha2b and ribavirin. Scientific Reports 2013, doi: 10.1038/srep01686].


Infection Prevention and Control

[ref: PHAC]

Prior to any patient interaction, all healthcare workers (HCWs) have a responsibility to assess the infectious risk posed to themselves and to other patients, visitors, and HCWs. This risk assessment is based on professional judgment about the clinical situation and up-to-date information on how the specific healthcare organization has designed and implemented engineering and administrative controls, along with the availability and use of personal protective equipment (PPE).

Recommendations for infection prevention and control measures for patients presenting with suspected or confirmed infection or co-infection with MERS-CoV in acute care settings include:

1. Routine Practices: For all patients, at all times, in all healthcare settings including when performing a point-of-care risk assessment, and adherence to respiratory hygiene and hand hygiene.

2. Contact and Droplet Precautions (should be implemented empirically):

  • Wear gloves and a long-sleeved gown upon entering the patient's room, cubicle or designated bedspace.
  • Wear facial protection (surgical or procedure mask and eye protection, or face shield, or mask with visor attachment) when within two metres of a patient suspected or confirmed to have MERS-CoV infection.

3. Airborne Precautions: When performing aerosol-generating medical procedures (AGMPs). A respirator and face/eye protection should be used by all HCWs present in a room where an AGMP is being performed on a patient suspected or confirmed to have MERS-CoV infection. Whenever possible, AGMPs should be performed in an airborne infection isolation room.

It should be noted that, in Ontario, Airborne Precautions (including respirator and airborne infection isolation room) are recommended. This is also the recommendation from the Centers for Disease Control (CDC) in the U.S.

As information becomes available, these recommendations will be re-evaluated and updated as needed. For more information on Infection Prevention and Control:


Laboratory Information and Speciment Collection 

Specimens to be collected for diagnosis of MERS-CoV include: nasopharyngeal swab*, urine, stool (if diarrhea is present), blood (for serology), blood (for PCR, collected in EDTA). If a bronchoalveolar lavage (BAL) has been done, a portion should be sent for MERS-CoV testing. [ref: PIDAC]

* There is increasing evidence to suggest that nasopharyngeal swabs are less sensitive for detecting infection with MERS-CoV than specimens taken from the lower respiratory tract (e.g., sputum, endotracheal aspirate, bronchoalveolar lavage). [ref: WHO]

Laboratories should have a mechanism for notification and prompt delivery of specimens from suspected patients to public health/reference laboratories. A safety protocol should be in place for laboratory staff who will be handling specimens from suspected cases of MERS-CoV.


Travel Advice

Updated 10 June 2015

Since September 2012, the following countries in the Middle East have reported cases of MERS-CoV: Bahrain, Iran, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, United Arab Emirates and Yemen. Based on the current available evidence, the public health risk posed by MERS-CoV to Canadians remains low. Those travelling to the above countries are advised to practice travel precautions as outlined in the following recommendations:

The following information is available for pilgrimages to the Kingdom of Saudi Arabia:


MERS-CoV Links

Public Health Agency of Canada (PHAC) Links
World Health Organization (WHO) Links
Provincial Links
CDC Links
Other Links
Additional Reading



SARS (Severe Acute Respiratory Syndrome)

There are currently no cases of Severe Acute Respiratory Syndrome (SARS) anywhere in the world. The following information has been retained for historical purposes. Please note that some links may no longer be working.


On April 16, 2003 researchers around the world established a hitherto unknown virus as the cause of SARS. The new coronavirus has been named by WHO and member laboratories as "SARS-CoV Virus" [image of virus]. Thirteen laboratories worked on meeting Koch's postulates, necessary to prove disease causation. Koch's postulates stipulate that to be the causal agent, a pathogen must meet four conditions: it must be found in all cases of the disease, it must be isolated from the host and grown in pure culture, it must reproduce the original disease when introduced into a susceptible host (in this case, monkeys), and it must be found in the experimental host so infected. Credit for the coronavirus findings, which definitively pinpoints the cause of SARS, is attributed to the 13 laboratories, working in conjunction with WHO. This discovery now enables scientists to concentrate on developing diagnoses kits, treatments and, eventually, the possibility of a vaccine. [ref: WHO, 16 April 2003 ]

There is some evidence that the SARS virus originated in animals and crossed into humans, and work is continuing to confirm this. Animal testing has shown that co-infection with other viruses (e.g. metapneumovirus) does not affect the virulence of the SARS virus or act in a symbiotic fashion with it, as earlier suspected. Many animal species appear to be able to carry the SARS virus. [WHO] In a recent seroprevalence study carried out in Guangdong Province in China (the "birthplace" of SARS), "serologic evidence suggests that asymptomatic infection with SARS-CoV or an antigenically related virus occurred in Guangdong Province. Seroprevalence of IgG antibody to SARS-CoV was substantially higher among traders of live animals than among persons in control groups, consistent with the hypothesis that SARS-CoV crossed the species barrier from animals to humans. The results are consistent with preliminary determinations of a joint research team from China's Ministry of Agriculture and Guangdong Province, which found that sequences of coronavirus detected by polymerase chain reaction in bats, monkeys, masked palm civets, and snakes were identical to or similar to those of human SARS-CoV isolates. In addition, a joint study by Shenzhen CDC and Hong Kong University determined that the sequence of coronavirus isolated from masked palm civets is 99 percent identical to human SARS-CoV. These determinations appear consistent with the hypothesis that an animal reservoir exists for SARS-CoV or an antigenically related virus; however, the findings are not sufficient to identify either the natural reservoir for SARS-CoV or the animal(s) responsible for crossover to humans. This report provides indirect support for the hypothesis that SARS-CoV might have originated from an animal source and identifies multiple animals for further study".  [ref: ProMed Oct. 16, 2003].



Symptoms of the illness, in order of observed frequency, include high fever, non-productive cough, shortness of breath, malaise, diarrhea, chest pain, headache, sore throat, myalgias and vomiting. Lymphopenia, elevated LDH levels, elevated AST levels and elevated creatine phosphokinase levels have also been reported [ref: Health Canada]. About 10% of patients decline around day 7 and require mechanical assistance to breathe. Symptoms appear to be worse in the second week of illness and onwards.


The primary mode of transmission of the SARS virus is direct mucous membrane (eyes, nose, and mouth) contact with infectious respiratory droplets and/or through exposure to fomites (objects contaminated with infected material). SARS does not appear to be airborne. Most of the data have been consistent with transmission through large droplets or body fluidsAerosol transmission cannot be totally discounted, but if it occurs it is uncommon. If the causative organism had been readily transmissible by aerosol, many more cases would have been expected, especially in the countries where transmission has slowed or never started.  Aerosolizing procedures in hospitals (such as nebulization), and other events that promote aerosolization of infectious respiratory droplets or other potentially infectious materials (such as faeces or urine) in hospitals or other settings, may amplify transmission.

The incubation period ranges from 2 to 10 days, with a mean of 4-6 days and a median of 4-5 days. The minimum reported incubation period was 1 day and the maximum was 14 days. It is still unclear whether the route of transmission influences the incubation period.

Transmission efficiency appears to have been greatest from severely ill patients or those experiencing rapid clinical deterioration, usually during the second week of illness. Data from Singapore showed that few secondary cases occured when symptomatic cases were isolated within 5 days of illness onset. Viral shedding of the SARS virus was relatively low during the initial phase of illness, and peaked at about day 10 of illness in respiratory specimens. Virus shedding in stool began later than in respiratory secretions, with most samples showing positive PCR by day 12-14 and then declining. This made testing difficult in the early stages of the disease. Some persons appeared to be "super-shedders", with very high viral loads that resulted in transmission. There is presently no evidence to suggest that disease transmission occurs prior to the onset of symptoms in a suspected or probable case of SARS [Health Canada].

In Hong Kong there were some patterns of infection that are most easily explained by environmental transmission. Evidence suggests that the virus survives in faeces and urine at room temperature for at least 1-2 days, and appears to be more stable in stool from patients with diarrhoea (up to 4 days), possibly related to the increased pH. The SARS virus survives freezing. Heat at 56°C for 15 minutes kills the virus, as does exposure to many common disinfectants and fixatives [WHO].

The index case in Ontario was an individual who travelled to Hong Kong and stayed at the Metropole Hotel, where a cluster of SARS cases was subsequently identified [ref: MMWR Vol 52, No. 12, March 28, 2003]. Two clusters of cases in Toronto represented community transmission resulting from late diagnosis of cases within a small religious group and persons who attended a funeral.

The experience in Canada illustrates that highly developed countries can be vulnerable to transmission from imported cases of SARS, especially in hospitals. If the infection is not recognized early and appropriate infection control precautions put in place, extensive transmission can occur. Early detection and ongoing surveillance appears to be the main reason for the lack of transmission from cases in B.C. and the U.S. Those most at risk seem to be family members (19% of cases) and healthcare workers (74% of cases) who have close contact with symptomatic cases. Travel-related cases are few (7%). It is worth noting that there were no reported secondary cases from 2 hospitalized Canadian SARS cases where family members were not permitted to visit and healthcare workers adhered to strict infection control precautions.

Other Sources of Transmission: WHO is aware of concern over the possibility that SARS may be caused by contact with animals. WHO is therefore working closely with the Food and Agriculture Organization of the United Nations (FAO) and the Office International des Epizooties (OIE), to determine whether there is any evidence to suggest that SARS-related disease has occurred in animals. WHO, FAO and OIE have reviewed reports received regarding SARS transmission. To date there is no epidemiological information to suggest that contact with goods, products, or animals shipped from SARS-affected areas has been the source of SARS infection in humans.


 2003 Case Count (cumulative cases) Based on WHO Definitions

By December 31, 2003 the World Health Organization (WHO) received reports of 8098 probable cases (774 deaths) of Severe Acute Respiratory Syndrome (SARS), an atypical pneumonia due to one or more viruses. The first documented case occurred on November 16, 2002 (China). The last reported case in the 2003 epidemic occurred on July 13, 2003 (U.S.). Healthcare workers accounted for 21% of all cases. The world case fatality rate for probable cases was 9.6%. Twenty-six countries reported cases, with the majority of cases occurring in China, Hong Kong, Singapore, Taiwan, Viet Nam, Canada and the U.S. [see epidemic curves]. [ref: World Health Organization]. For a summary of cases by country refer to the WHO summary table.

In the U.S. there were 8 confirmed cases, 19 probable cases and 137 suspect cases reported in 2003. (total 164 cases). No deaths were reported in the U.S. [ref: Centers for Disease Control and Prevention].

In Canada there were 251 probable cases (247 cases in Ontario, 4 cases in British Columbia), with 44 deaths (43 probable, 1 suspect). In addition there were 187 suspect cases (128 in Ontario, 46 in B.C., 6 in Alberta, 4 in PEI, 2 in New Brunswick and 1 in Saskatchewan). The case fatality rate in Canada was estimated at approximately 17.1% of probable cases (10.0% of probable and suspect cases). Most of the case fatalities occurred in patients with underlying illness, and nearly all were elderly patients with the average age being 71 years. There have been no new cases of SARS in Canada since June 12, 2003. [ref: Health Canada].

There were a total of 136 probable cases and 27 deaths in the first Ontario cluster and 111 probable cases with 17 deaths in the second Ontario cluster in 2003.

The Ontario Experience

In Ontario, Public Health officials closed two hospitals in Toronto in March, 2003. The initial cases in Toronto were either travellers from Asia or healthcare workers who had unprotected contact with initial cases before they were aware of SARS. On March 26, the Premier of Ontario declared SARS to be a provincial emergency. It was also made a reportable virulent communicable disease in Ontario. On March 27, 2003 additional measures were put into place in the Greater Toronto Area and Simcoe County, which included limiting visitors to hospitals, restricting patient visits to hospitals, suspending volunteer programs and suspending patient transfers into the city hospitals as well as transfers between health care facilities in the area. On March 31 these measures were extended to all hospitals in Ontario. On May 16, 2003 many of these restrictions were lifted as there had been no new cases of SARS in Ontario since May 4, 2003.

On May 24, health authorities in Canada informed WHO that two clusters of cases of respiratory illness in Toronto were undergoing investigation for respiratory illness, including pneumonia. One cluster involved 5 cases and a second cluster involved 26 cases, including 10 health care workers. One patient undergoing investigation had been linked to both clusters. There was no evidence of widespread public transmission of SARS and all of the new cases under investigation were linked to the original cluster of cases. Hospitals in the Greater Toronto Area were asked to return to heightened infection control protocols in their Emergency departments. These precautions have now been relaxed and there are no current travel advisories due to SARS. For the CCWR report on this second cluster see CCDR Preview, 13 June 2003.

SARS in Laboratory Workers [August/03, December/03]

On August 26, 2003 the World Health Organization confirmed a single case of SARS in a laboratory worker in Singapore, the first case since the end of the world pandemic of SARS.  Acquisition appeared to have been occupational [WHO Website]. On December 11, 2003 a laboratory worker in Taiwan developed symptoms of SARS following laboratory exposure [WHO Website]. There was no transmission related to either of these cases. Laboratory workers can find guidelines for working with SARS in laboratories in the Laboratory Information section of this page (under SARS LINKS).

Post-epidemic SARS in Guangdong, China [December/03 - January/04]

On December 20, 2003 a 32–year–old television producer from Guangzhou, China was hospitalized and placed on isolation with symptoms of pneumonia (onset December 16). Laboratory tests indicated the possibility of SARS CoV infection. Further testing confirmed SARS. All contacts were quarantined and there were no additional cases. For more information on this case:

Since then, three further cases (confirmed in a female restaurant worker and a physician, probable SARS in a business man) surfaced in Guangzhou. All four cases were unrelated. There have been no secondary cases of SARS. For more information:

Post-epidemic SARS in Beijing, China [April/04]

Confirmed Cases: On March 25, 2004 a 26-year-old female laboratory researcher (who had been working with the SARS virus) developed symptoms compatible with SARS and was hospitalized in Beijing. The researcher's mother, who also assisted in her care, fell ill on April 8 and died on April 22. On April 7, 2004 a 20–year–old nurse who had been caring for the researcher was hospitalized and a few days later was placed in intensive care with SARS-like symptoms (onset April 5). Five contacts of the nurse (her mother, father, aunt, as well as a patient sharing a ward with the nurse and the patient's daughter who accompanied the patient) subsequently developed symptoms (onset April 16 to 19). The ninth case was a 31-year-old male laboratory researcher (same laboratory as the above), who developed symptoms on April 17 and was hospitalized on April 22. These 9 cases were confirmed as caused by the SARS coronavirus by the World Health Organization following extensive review. There have been no new cases since April 19, 2004.

For more information on these cases:

The Public Health Agency of Canada has provided the following documents:



Health Canada epidemiological summaries:



As SARS is not thought to be an airborne infection, research must clarify the need for airborne precautions compared with measures needed to prevent transmission via droplets and contact with body fluids. The need for protective equipment is related to procedures. Consideration needs to be given to equipment that provides a good standard of care and adequate protection while also being affordable and sustainable. Sophisticated procedures, especially those that generate aerosols, greatly amplify the risks of infection. [WHO]

In the meantime, until more is known about the exact mechanisms of acquisition, the Ontario Ministry of Health has provided a series of directives to Ontario hospitals outlining procedures that must be put into place in the event of another SARS outbreak, for high-risk respiratory procedures (outbreak and non-outbreak conditions), and isolation precautions for patients suspected of having SARS. The recommendations for isolation precautions for SARS patients (suspect or confirmed) include:

  • private room, preferably with negative pressure ventilation and anteroom
  • long-sleeved gown
  • N95 mask or equivalent, for which the wearer has been fit-tested
  • hair cover
  • protective eyewear
  • full faceshield
  • gloves

Equipment should be put on in the above order, and removed in reverse order. Training and familiarity with these procedures is an important component of staff protection, as self-contamination during removal of equipment, with subsequent infection, has been documented. Refer to the Ontario directives for complete infection control procedures.

Protecting Canada's Blood Supply

 Health Canada issued formal direction to blood operators on April 10, 2003 as a precaution to protect the blood supply in Canada and recipients from the possible threat of SARS. Although there is currently no evidence of transmission of SARS through blood and blood components, Health Canada has directed blood operators to temporarily defer from [accepting] blood (for a period of 10 days) from persons who have:
- travelled within the previous 10 days to an affected area outside Canada. The affected areas are currently: China, including the Hong Kong Special Administration Region; Hanoi, Vietnam; Singapore and Taiwan;
- been a patient, worked in, or visited a facility that is under quarantine for SARS.



Antibody tests include ELISA (IGM/IGA) to detect antibodies in serum from day 20 after onset of clinical signs. Antibodies have been identified in some patients as early as 14-21 days after onset. Immunofluorescence assays detect antibodies in serum after day 10 of onset. Test is more difficult to perform, requiring live virus in cell culture and an immunofluorescence microscope, limiting its use to reference laboratories.  PCR can detect genetic material of coronavirus in various specimens (blood, stool, respiratory secretions). Several international reference laboratories have developed primers which are being shared on the WHO website. Virus from patients with SARS can be grown in cell culture from respiratory secretions and blood.

Positive laboratory test results indicate that a patient has been recently infected with the coronavirus. Negative tests do not imply that the patient does not have SARS. The sensitivity and specificity of current tests need to be developed further before they can be used to confirm a clinical diagnosis. [Ref: WHO]

For specimen collection from potential SARS patients, refer to "Guidelines for Collecting Specimens from Potential SARS Patients from the CDC.



Public Health Agency of Canada
World Health Organization (WHO)
Centers for Disease Control and Prevention (CDC)
Provincial Information
Ontario Manitoba Newfoundland & Labrador Top
Laboratory Information
Other Information


  • CCDR 15 April 2003 Preliminary Clinical Description of Severe Acute Respiratory Syndrome
  • CCWR 1 May 2003 The War Against an Unknown Pathogen: Rising to the SARS Challenge
  • JAMA 6 May 2003 Clinical Features and Short-term Outcomes of 144 Patients With SARS in the Greater Toronto Area
  • CMAJ 13 May 2003 SARS: the struggle for containment
  • WHO 20 May 2003  Severe acute respiratory syndrome (SARS): Status of the outbreak and lessons for the immediate future
  • CCDR 1 June 2003  Cluster of Severe Acute Respiratory Syndrome Cases Among Protected Health Care Workers - Toronto, April 2003
  • CCDR 15 June 2003  Assessment of In-Flight Transmission of SARS - Results of Contact Tracing, Canada
  • CCDR 1 July 2003  Update - Severe Acute Respiratory Syndrome - Toronto, 2003
  • NEJM 22 April 2004  Evidence of Airborne Transmission of the Severe Acute Respiratory Syndrome Virus


This section will deal with recommendations and links to expert resources that offer planning for the future and the "next season" of SARS, as well as dealing with some of the devastating effects SARS has had on healthcare in Ontario.