Effectiveness of onsite monochloramine disinfection for waterborne pathogen control in a Canadian acute care academic hospital

Marianne Grimard-Conea¹, Xavier Marchand-Senécal^{2,3}, Michèle Prévost¹

¹ Industrial Chair in Drinking Water, Department of Civil, Mining and Geological Engineering, Polytechnique Montréal, Montréal, QC, CA ² Microbiology and Infectious Disease Division, Department of Medicine, Hôpital Maisonneuve-Rosemont, CIUSS de l'Est-de-l'Île-de-Montréal, Montréal, QC, CA ³ Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, CA

1. Timeline background and objectives

Summer 2022 to summer 2023

Measure the impact of *in situ* disinfection with NH₂Cl in a hospital hot water system on the:

- 1. Abundance of *Lp*, *Lp* sg 1, *Lspp*, NTM and *Pa*
- **Concentrations of general microbial indicators** 2.
- 3. Relative abundance of all bacterial (16S) and eukaryotic (18S) genera
- **Concentrations of other physico-chemical** 4. parameters and common plumbing metals

Nontuberculous

mycobacteria (NTM)

540-bed Canadian academic hospital water system (1954)

- > 55 °C in all hot water return loops

Legionella pneumophila (Lp)

AFTER monochloramine:

- One distal point remaining positive (10¹-10³ MPN/L) despite • receiving 0.1-1.7 mg/L of NH₂Cl throughout the study
- Gradual (3 weeks) reductions in *Lp* gene copies (faster in system points)
- Temporary shift from *Lp* sg 2-15 to *Lp* sg 1 observed at a few sites

 \succ Discontinuation of NH₂Cl dosage resulted in important increases in culturability (> 3-log) and gene copies (> 4-log) at one distal point

3.2. Legionella spp → Rapid reductions (4 weeks) in gc/L

BEFORE monochloramine:

- 100% (66/66) of distal points positive (10¹-10⁶ gc/L) to *Lspp*
- 100% (30/30) of system points positive (10^2 - 10^4 gc/L) to *Lspp*

AFTER monochloramine:

Gradual (4 weeks) reductions in *Lspp* gene copies, then mean concentrations stabilized between LoD and LoQ

3.3. Mycobacterium spp \rightarrow Rapid reductions (2 weeks) in gc/L

BEFORE monochloramine:

AFTER monochloramine:

- 100% (66/66) of distal points positive (10⁵-10⁸ gc/L) to *Mspp*
- 100% (30/30) of system points positive (10⁵-10⁷ gc/L) to *Mspp*

AFTER monochloramine:

- Gradual (2 weeks) reductions in *Mspp* gene copies, but important (up to 4-log) differences gene copies concentrations in distal points
- Discontinuation of NH₂Cl dosage resulted in important increases in Lspp (> 2-log) and Mspp (> 3-log) at all distal points and system points
- Stagnant distal points (

) [showerheads, faucets] generally result in increased (> 1-log) Lspp and Mspp gene copies

3.4. Take-home messages

1. Recurring costs and inconveniences related to points of use filters highlight the need to seek effective long-term mitigation solution

2. NH₂Cl is a highly efficient treatment to mitigate *Lp* despite the optimization of other control parameters (e.g., hot water temperatures)

3. Persistence of lower levels of *Lspp* and NTM after NH₂Cl demonstrates the need for proper risk assessment

4. Interruption of NH₂Cl confirms persistence of Lspp/NTM in the biofilm (rebounds observed) \rightarrow in situ disinfection must be maintained

5. Preventative flushing of low use distal sites should be implemented to ensure efficient treatment across all hospital water system

Acknowledgements and funding

- Yves Fontaine, Jacinthe Mailly, Mélanie Rivard, Julie Philibert, and Ha Thanh Loan Nguyen from the Industrial Chair in Drinking Water (Polytechnique Montreal), Pr. Sébastien Faucher and Sara Matthews from McGill University, Dominic Desjardins from Hôpital Maisonneuve-Rosemont and Julie Brodeur from the DRSP
- Funding was provided by Natural Sciences and Engineering Research Council of Canada (NSERC) through the Alliance Grant (ALLRP 545363-19) and the Discovery research grant (RGPIN-2021-04341)

Marianne Grimard-Conea

marianne-2.grimard-conea@polymtl.ca

