

Reality Check: Challenges with Reporting Data from Various Sources

Dr. Nisha Thampi, MD, MSc

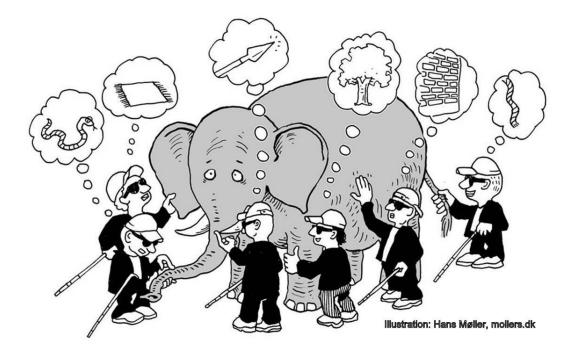
Medical Director, Infection Prevention and Control Program

Children's Hospital of Eastern Ontario, Ottawa

May 26, 2019

Disclosure Statement

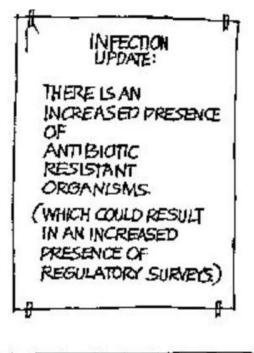
• I have no affiliation (financial or otherwise) with a pharmaceutical, medical device or communications organization.


Measurement is the first step that leads to control and eventually to improvement. - H. James Harrington

Measure \rightarrow understand \rightarrow control \rightarrow improve

But...

GET ALL THE INFORMATION YOU CAN, WE'LL THINK OF A USE FOR IT LATER.


Individuals may perceive and therefore <u>measure</u> healthcare-associated infections differently Pressure on a program to measure inaccurately so the problem remains poorly <u>understood</u>

And...

HAI data under scrutiny by public payer as quality metrics (Reimbursement in the US)

Critical to follow standard definitions and ensure consistency

- Ascertainment of infection
- Attribution to healthcare setting
- Reporting internally and externally

Objectives

- Review process and outcome measures in surveillance of healthcareassociated infections
- Review impact of reportable HAI surveillance indicators
- Highlight pitfalls in accurately reporting data from various sources

Objectives

- Review process and outcome measures in surveillance of healthcareassociated infections
- Review impact of reportable HAI surveillance indicators
- Highlight pitfalls in accurately reporting data from various sources

Value of surveillance

- Systematic, ongoing collection and analysis of data during a defined period of time using standardized definitions
 - May also involve laboratory confirmation and chart review
- Timely dissemination of information to those who require it in order to take action = improve patient safety
- Why?
 - Provides measure of burden of illness
 - Establishes benchmark rates for internal and external comparison
 - May motivate hospitals to adhere more closely to best practices in infection prevention
 - Identifies potential risk factors
 - Allows for assessment of specific interventions

PIDAC-IPC 2014: Best Practices for Surveillance of Health Care-associated Infections in Patient and Resident Populations

HAI surveillance indicators: outcomes

- Communicable diseases and events
- Body site-specific
 - Central line-associated bloodstream infections
 - Surgical site infections
 - Infection-related ventilator-associated events
 - Catheter-associated urinary tract infections
- Organism-specific healthcare-associated infections
 - Methicillin-resistant *Staphylococcus aureus*
 - Vancomycin-resistant Enterococci
 - Carbapenemase-producing organisms
 - C.difficile

CHEO

HAI surveillance indicators: processes

- Central line-associated bloodstream infections
 - Hand hygiene prior to accessing central line
 - Bundle adherence (5-7 elements)
- Surgical site infections
 - Adherence to pre-operative MRSA screening protocol
 - Appropriateness of surgical antimicrobial prophylaxis
- Infection-related ventilator-associated events
 - Adherence to practices that reduce infection risk associated with ventilator use
- Catheter-associated urinary tract infections
 - Adherence to practices to limit urinary catheter use

Hand hygiene!

Objectives

- Review process and outcome measures in infection prevention and control
- Review impact of reportable HAI surveillance indicators
- Highlight pitfalls in accurately reporting data from various sources

Impact of hospital-wide surveillance on hospital-acquired infections in an acute-care hospital in The Netherlands

A. J. Mintjes-de Groot*, C.A. N. van Hassel†, J.A. Kaan†, R. P.Verkooyen‡ and H.A.Verbrugh‡

"hospital-wide surveillance of hospital-acquired infections provides appropriate targets for interventions tailored to the specific needs of the hospital"

Journal of Hospital Infection (2006) 64, 16-22

www.elsevierhealth.com/journals/jhin

Effectiveness of a nationwide nosocomial infection surveillance system for reducing nosocomial infections

P. Gastmeier ^{a,*}, C. Geffers ^b, C. Brandt ^b, I. Zuschneid ^b, D. Sohr ^b, F. Schwab ^b, M. Behnke ^b, F. Daschner ^c, H. Rüden ^b

Surveillance associated with 30% decrease in rate of pneumonias and SSI, 20% decrease in BSI

Journal of the Pediatric Infectious Diseases Society 2018;7(1):18-24

ORIGINAL ARTICLE

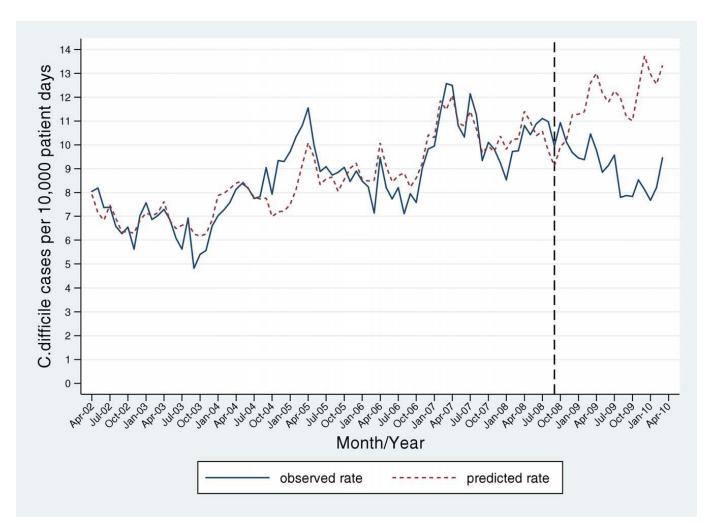
Burden of Healthcare-Associated Viral Respiratory Infections in Children's Hospitals

Caroline Quach,^{1,2,3,4} Rita Shah,⁵ and Lorry G. Rubin^{5,6}

¹Montreal Children's Hospital, McGill University Health Centre, Quebec, Canada; ²Departments of Pediatrics and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; ³Infection Prevention & Control Unit, CHU Sainte-Justine, Quebec, Canada; ⁴Department of Microbiology, Infectious Disease and Immunology, University of Montreal, Quebec, Canada; ⁵Steven and Alexandra Cohen Children's Medical Center of New York of Northwell Health, New Hyde Park, New York; and ⁵Hofstra Northwell School of Medicine, Hempstead, New York

Prospective surveillance for HA-VRI found higher incidence rates compared to hospital-associated bloodstream infections

AMERICAN JOURNAL OF EPIDEMIOLOGY Copyright © 1985 by The Johns Hopkins University School of Hygiene and Public Health All rights reserved Vol. 121, No. 2 Printed in U.S.A.

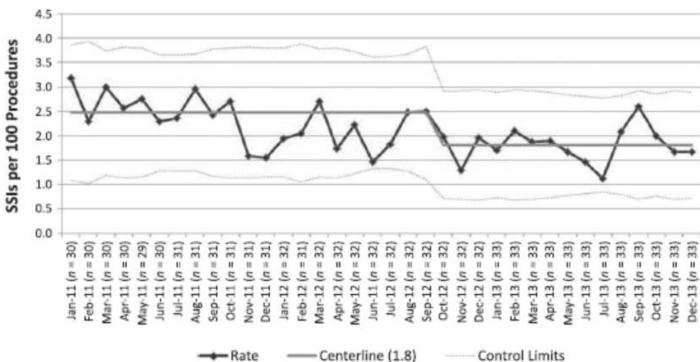

THE EFFICACY OF INFECTION SURVEILLANCE AND CONTROL PROGRAMS IN PREVENTING NOSOCOMIAL INFECTIONS IN US HOSPITALS

ROBERT W. HALEY,¹² DAVID H. CULVER,¹ JOHN W. WHITE,¹ W. MEADE MORGAN,¹ T. GRACE EMORI,¹ VAN P. MUNN¹ AND THOMAS M. HOOTON¹³

Organized, intensive surveillance and control activities associated with 32% decrease in HAI

Reduction in *Clostridium difficile* Infection Rates after Mandatory Hospital Public Reporting: Findings from a Longitudinal Cohort Study in Canada

Nick Daneman^{1,2}*, Therese A. Stukel^{1,3}, Xiaomu Ma¹, Marian Vermeulen¹, Astrid Guttmann^{1,3,4,5}



Following introduction of public reporting, *C. difficile* infections declined by 26% across Ontario = >1,900 cases averted per year

Surgical Site Infection Reduction by the Solutions for Patient Safety Hospital Engagement Network

Joshua K. Schaffzin, MD, PhD^a, Lory Harte, PharmD, CPHQ^b, Scott Marquette, MHSA^c, Karen Zieker, MS^d, Sharyl Wooton, MS^d, Kathleen Walsh, MD, MSc^d, Jason G. Newland, MD, Med^b

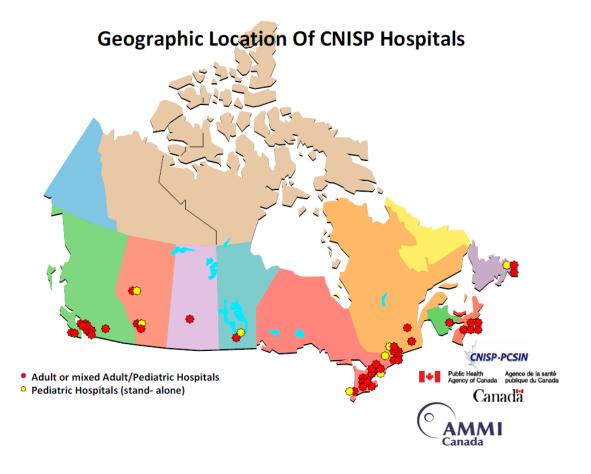
Surgical Site Infections Rate Cardiothoracic, Neurosurgical Shunt, and Spinal Fusion Procedures SPS National Network January 2011 to December 2013

Collaboration in surveillance + bundle implementation = 21% reduction in SSI rate of pediatric cardiothoracic, neurosurgical ventricular shunt, and spinal fusion surgeries

Children's Hospitals'

Patient Safety

Every patient. Every day.


Solutions for

Canadian Nosocomial Infection Surveillance Program

- Established in 1994
- Epidemiology and molecular characteristics of healthcareassociated infections in Canadian hospitals
- Partnerships: PHAC, NML, AMMI
- 73 sentinel hospitals in 10 provinces
 - 9 freestanding pediatric hospitals
 - ~ 78% of Canadian population lives within 100km of CNISP site

CNISP

- Provides Canadian hospitals with "benchmark" data
 - Standardized HAI surveillance case definitions reviewed annually
 - National, regional and site-specific HAI rates, strain types and antimicrobial resistance and utilization data
- Provides evidence-based data:
 - Antimicrobial surveillance program (CARSS)
 - Canadian infection prevention and control guideline preparation (National Advisory Committee for Infection Prevention and Control)
- Raises public awareness of important infection control issues relating to AROs and HAIs

https://www.canada.ca/en/public-health/services/infectious-diseases/nosocomial-occupational-infections.html https://ipac-canada.org/cnisp-publications.php

Objectives

- Review process and outcome measures in infection prevention and control
- Review impact of reportable HAI surveillance indicators
- Highlight pitfalls in accurately reporting data from various sources
 - Case study

Variability in reporting

- What: clinical diagnosis vs standard definition
- Who: infection control professional, coders, clinicians in admin roles
- When: continuously or periodically
- Where: internal and external reporting authorities
- How are data reported: numerators and denominators

What is reported

- Sources of surveillance data:
 - Patient chart/records (e.g. pharmacy, medical imaging)
 - Laboratory reports
 - Safety reports
 - Clinical rounds
 - Communication with caregivers
 - Decision Support (coders)
 - Surveillance-specific forms (e.g. NICU patients with central lines by weight category)
 - Surgical Information System
 - Critical Care Information System

What is reported

- Clinical diagnosis vs surveillance definitions
- Critically important to have uniform application of standardized and validated case definitions
 - For both outcome and process measures
- Unique challenges to pediatric surveillance:
 - Surgical site infection
 - ICD-10 codes do not have specific codes for pediatric procedures e.g. Tetralogy of Fallot
 - Contentious diagnosis ("purulent drainage" vs "incision clean and dry" by MDs)
 - *C.difficile* infection

CHEO

Case: Clostridium difficile reporting

- Colonization is common in children under 2 yo
 - Higher rates of colonization, lower rates of complications compared to adults
 - Benchmarked against adult teaching and community hospitals in provincial reporting
 - IDSA "strongly discourages" public reporting of cases in children <2 yo
 - CNISP and most provincial ministries of health report rates among 1-18 yo
 - Alberta moving to 2-18 yo
 - = What gets measured as a quality metric?
- Case definition for CNISP reporting:
 - 3 x loose, watery stools or fever, abdominal pain and/or ileus
 - "without reasonable evidence of another cause of diarrhea"
 - >70% cases found to have alternate pathogen present
 - = Requires individual chart review + lab confirmation

Clinical Practice Guidelines for *Clostridium difficile* infection: IDSA 2018 AMMI Canada treatment practice guidelines for *Clostridium difficile*: 2018

CHEO

When are HAI data reported?

- Continuously or concurrently
- Periodically (retrospective)
- Challenges
 - Human resources for case finding and review
 - Different case definitions among reporting bodies
 - May not be able to determine "truth" when retrospectively reviewing data due to numerous sources

Who does the reporting?

- Infection control professional
- Coder from Decision Support
- Clinical team: notifies IPAC to review if clinical suspicion of HAI
- Clinical nurse: temporary administrative role to support QI initiative

Where do HAI data go?

- Internal committee: IPAC, Quality and Safety; Executive, Board
- Provincial mandatory reporting
- Quality improvement / surveillance programs
 - Solutions for Patient Safety (US and Canadian network of pediatric hospitals)
 - National Surgical Quality Improvement Program
 - Canadian Nosocomial Infection Surveillance Program

How are HAI reported?

- Numerators:
 - Based on case definition; can differ between surveillance programs
 - e.g.: CSF shunt infection for CNISP = up to 1 year post-op
 - SPS = up to 90 days post-op
 - We can create workflow process, but which rate to report internally?
- Denominators:
 - Not consistent between surveillance programs

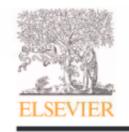
Denominator	NSQIP	SPS	CNISP
Cardiovascular surgery surveillance	No	Yes	Yes
General surgery surveillance	Yes	No	No
Pericardial window procedures	No	Yes	No

Case Study:

- Hospital IPAC program prospectively identifies HAIs
 - Submits data to CNISP, Ministry of Health, Critical Care Services Ontario
- 2016: Hospital joined 2 surveillance networks:
 - Solutions for Patient Safety to reduce risk of CLABSI, SSI
 - CV surgery requiring bypass, spinal fusion, neurosurgical shunt infections
 - IPAC program central to surveillance strategy and development of process audits
 - National Surgical Quality Improvement Program-Pediatrics network
 - Data abstractor hired by NSQIP team to prospectively collect preoperative, intraoperative and postoperative data, with outcomes at 30 days after index surgery
 - Surveillance every 8 days x 35 cases, no dental or CV surgery
 - Data submitted directly to NSQIP and anonymized in network publications
 - Hospital benchmarked against similar institutions, info sent to hospital leadership

Case Study:

- 2017: CIHI approached hospital in advance of launching "In-hospital infections indicators"
 - 2 publicly reportable indicators: MRSA, C.difficile
 - Meant to complement Patient Safety indicators (e.g. in-hospital sepsis) with site-specific data
 - Infection data to be collected by coders
 - Coders review clinical chart and code for HAI if documented in physician's note



Case study: Current state

- CNISP
 - ICP collects data
 - Most of CNISP data reported to Solutions for Patient Safety, MOH
- NSQIP:
 - Reported directly to NSQIP and internally by clinical administrator
 - ICP may receive data to validate, with short turnaround time
- Solutions for Patient Safety
 - ICP collects data, sends to clinical administrator to report internally and to SPS
- CIHI
 - No published HAI indicator

Challenges = human resource-intensive; various denominators for same measure Which one reflects the truth? Which one to follow in quality improvement?

Contents lists available at ScienceDirect

American Journal of Infection Control

journal homepage: www.ajicjournal.org

Major Article

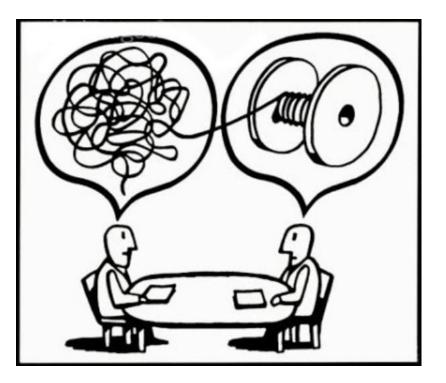
Assessment of the accuracy and consistency in the application of standardized surveillance definitions: A summary of the *American Journal of Infection Control* and National Healthcare Safety Network case studies, 2010-2016

Marc-Oliver Wright MT(ASCP), MS, CIC, FAPIC ^{a,*}, Katherine Allen-Bridson MScPH, BSN, RN, CIC ^b, Joan N. Hebden MS, RN, CIC ^c

- Case studies published in AJIC with link to online survey
 - Multiple-choice questions based on standard surveillance criteria and protocols
- Assessed accuracy and consistency in applying standardized surveillance definitions
- 62.5% responses correct
 - ICPs responded correctly (62%) significantly more often than physicians (55%)
- Highlights need for continuing education, competency development, auditing

How to overcome challenges in data quality?

- One source of information internally and externally
 - All data collected by IPAC
 - Workload? Opportunity costs?
 - All data reviewed by IPAC
 - Forum (if no IPAC Committee)? Frequency? Responsibility if inaccurate data collection?
- HAI case finding and reporting
 - How to assess competency in applying case definitions within the organization?
 - How to measure accuracy of reporting



Acknowledgements

- Pat Bedard, RN, CIC
- Allyson Shephard, RN, CIC

