

Disclosures

 I have received a research grant from SAGE for a project on CLABSI risk factors in the NICU (ended in 2015)

Objectives

• Outline the infection prevention challenges that are unique to the neonatal intensive care unit

té de médecine

Con Sa

Université de Montréal

What is unique about a neonate?

- <u>Microbiota</u>: sum of all microbial life living in and on the human body and depends on what/who we have encountered.
- In utero: sterile/ near-sterile environment
- Fine balance between:
 - Preventing HAI
- · Modifying unique microbiota

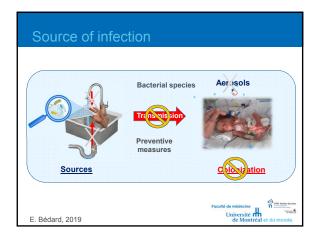
When normal is OR/NICU?

Newborns born by c-section and cared for in our NICU/nursery:
 Microbiota from hospital, HCP and other babies...

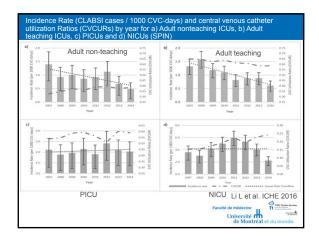
Almost 20 years ago, the AAP said:

"Each neonate should be approached as though he or she harbored colonies of unique flora that should not be transmitted to any other neonate"

AAP, American College of Obstetricians and Gynecologists. Infection control. In: Hauth JC, Merenstein GB, eds. Guidelines for Perinatal Care, 4th edn. Elk Grove Village: AAP, 1997:261.

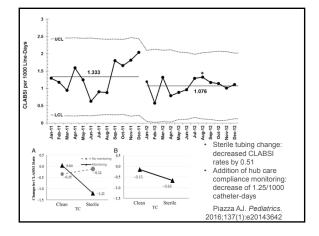

Impact of environme	ent			
	Table 1. Bacterial grow and after-gel hand cult	ures ^a		
 Microorganisms found on 	Bacterial growth	Cell phone	Before- gel hand	After-gel hand
NICU surfaces before		n = 50	n = 50	n = 50
	Any growth	50 (100%)	48 (96%)	37 (74%)
being found in infants' gut	Gram-positive cocci Enterococcus faecalis Micrococcus spp. Staphylococcus spp.	27 (54%) 48 (96%)	2 (4%) 2 (4%) 41 (82%)	3 (6%) 0 30 (60%)
 Reservoir: NG tubes, 	(coagulase negative) Staphylococcus aureu	4 (8%)	6 (12%)	3 (6%)
incubators and sinks	Staphylococcus aureu (Methicillin-resistant) Streptococcus spp. (α-hemolytic) Streptococcus viridan	2 (4%)	1 (2%)	0
Other high touch areas:	Gram-positive rods Bacillus spp. Diphtheroid spp.	s 0 18 (36%) 10 (20%)	7 (14%)	8 (16%) 7 (14%)
Cell phone	Gram-negative rods Acinetobacter spp. Enterobacter spp. Klebsiella spp. Maraxella spp. Pantoea spp. Unspecified Gram- negative rods	1 (2%) 1 (2%) 1 (2%) 2 (4%) 0 1 (2%)	2 (4%) 1 (2%) 2 (4%) 0 3 (6%) 0	1 (2%) 1 (2%) 1 (2%) 0 0 3 (6%)
	Other Yeast (unspecified)	1 (2%)	0	o
Beckstrom AC. J Perinatol 2013; 33: 960-3 Brooks B, Microbiome. 2014;2:1.	pathogens is higher than	Faculté de médecine	n = 50).	U Sainte-Jartine

Impact of HAIs in NICL


- Two-fold increase in death
- BSI associated mortality:
- CoNS infections: 1.8%
- Non-resistant GNR: 10.5%
- MDR GNR: 28.6%
- CoNS sepsis: 5.6x increase in CP at 18-24 mo.

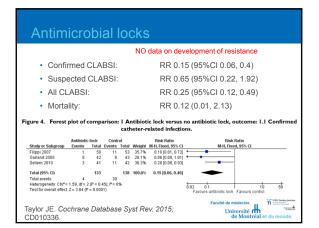
Goldmann DA. J Infect Dis. 1983;147:635-41; Blanchard AC. Clin Perinatol. 2015;227(8):757(8):757(8):7

Outbreaks ii	n NICU	
Table 1. Pathogens respons outbreaks reported in the literatur		 33%: source of outbreak not identified 54%: GNR
Bacterial (cum. outbreaks) (no. of individual outbreaks)	Fungal (no. of individual outbreaks)	- 34 /0. ONIX
Gram-positive [9]	Candida albicans (1)	
Enterococcus faecium (1)	Candida parapsilosis (2)	
Staphylococcus aureus (7)		
Staphylococcus epidermidis (1)	Viral (no. of individual outbreaks)	
	Human rhinovirus C (1)	
Gram-negative [21]	Parainfluenza-3 (1)	
Acinetobacter baumannii (1)	Respiratory syncytial virus (3)	
Burkholderia cepacia (3)		
Escherichia coli (3)	Parasite (no. of individual outbreaks)	Johnson J. Curr Op Infect Dis
Enterobacter ludwigii (1)	Cimex hemipterus (1)	2017
Klebsiella pneumoniae (7)		🥝 (100) Salara-Invite
Pseudomonas aeruginosa (1)		Faculté de médecine
Serratia marcescens (5)		Université na de Montréal et du monde.



3SI rate*			
No. of locations [†]	No. of CLABSIs	Central line days	Pooled mea
389 (345)	403	191,246	2.1
411 (354)	210	156,909	1.3
429 (385)	136	173,835	0.8
433 (349)	91	161,626	0.6
432 (334)	134	182,144	0.7
		Dudeck N	1. AJIC 2015
	No. of locations [†] 389 (345) 411 (354) 429 (385) 433 (349)	No. of locations ¹ No. of CLABSIs 389 (345) 403 411 (354) 210 429 (385) 136 433 (349) 91	No. of locations ¹ No. of CLABSIS Central line days 389 (345) 403 191,246 411 (354) 210 156,009 429 (385) 136 173,835 433 (349) 91 161,626 432 (334) 134 182,144

 NICU staffing Guidelines: 3- acuity) 			:1 (higher
Variables	OR	95%CI	
<95% planned staffing	1.47	1.11, 1.95	
BW: 500-749g	3.17	1.85, 5.45	
750-999g	2.28 1.36	1.47, 3.53	
1000-1249g	1.30	0.86, 2.14	
• NEO-KISS		Contr 2013; 2: 1	microb Resist Infect 11 Ré de médecine Université


Dressing/skin cleansing

- · CHG/alcohol vs. polyurethane /povidone-iodine
 - Sepsis without a source: RR 1.06 (95%CI 0.75, 1.52)
 - CLABSI:
- Catheter colonization: Contact dermatitis:

- RR 1.18 (95%CI 0.53, 2.65) RR 0.62 (95%CI 0.45, 0.86)
- RR 43.06 (95%CI 2.61, 710.44)

Lai NM. Cochrane Database Syst Rev. 2016; CD011082.

Faculté de médecine Université de Montréal et du monde.

patients (n = Study	Intervention		Participants		CRI Ratios		CRI Ratios
kbu-El-Haija (2014) ichoot (2015)	Ethanol 70%	Heparin Heparin	7		-		CRR: 0.34 (0.16-0.71) HR: 0.53 (0.29-0.98)
choot (2015) landrup (2013)	Taurolidine-citrate-heparin	Heparin Heparin	112				IRR: 0.26 (0.09-0.61)
ilippi (2007)	Heparinized Saline + fusidic acid	Heparinized saline	103				RR: 0.28 (0.13-0.6)
	ct measure of catheter-r 2 (100%) studies)			Favors Intervention	(95% CI)	Favors control	
							CRI Ratios
Study	Intervention		Participants		CRI Ratios		
	Intervention Ethanol 70% Antibiotic locks	Control Heparin Heparinized saline	53 271	÷			RR: 0.19 (0.12-0.32) RR: 0.17 (0.07-0.40)

Other interventions

<u>CHG sponges</u>:

Balain M. Cochrane Syst Rev 2015 (9)

- Reduces CLABSI rates in adult population (1.3 to 0.4/1000 catheter-days)
 Not shown to be better than best practices in PICU
 No data in NICU 46% of NICUs were using in 2012 (US>Canada)
 NHS recommends if used to limit to > 27 weeks and at least 7 days
- Antimicrobial impregnated CVC: • Silver-zeolite impregnated UVL: RR 0.11 (95% CI 0.01, 0.87) but only one study
- Ethanol lock: no data in neonatal population •
- Desinfectant caps: no data in neonatal population • - Risk of backward leakage and absorption

tté de médecine Université de Montréal et du montré

Faculté de mé

Other etiology	/?		
TABLE 1. Baseline Characte Their Controls ^a	eristics of Neonata	ll CLABSI Cases and	d
	Cases (n = 120), No. (%)	Controls (n = 293) No. (%)	-
Male sex	76 (63)	150 (51)	
Mean gestational age	30.7 wk	29.8 wk	
CVC dwell time at T0 (matching) (IQR)	10 (7–16)	9 (7-14)	
Singleton pregnancy	89 (74)	225 (77)	
Spontaneous vaginal delivery	51 (42.5)	123 (42)	
Concomitant pathologies ^b			
Apneas + bradycardias	41 (34)	118 (40)	
Respiratory distress syndrome	34 (28)	76 (26)	Dahan M. Infect Control Hosp
Patent ductus arteriosus	30 (25)	72 (25)	Epidemiol 2016; 37: 1446-52
Intraventricular hemorrhage ^c	9 (7.5)	35 (12)	
Necrotizing enterocolitise	14 (12)	26 (9)	
Intra-abdominal pathology ^a	35 (29)	33 (11)	
Ostomiese	11(9)	24 (8)	té de médecine
≥ 1 surgery ^f	46 (39)	87 (30)	Université on
≥1 abdominal surgery ^e	28/46 (61)	40/87 (46)	de Montréal et du monde.

>1 CVC at T0 4/120 (3)	150(51) 33/293 (11) 87/293 (30) 40/87 (46)	1.7 (1.05-2.63) 3.39 (1.81-6.36) 1.28 (0.69-2.37)	1.76 (0.98-3.16) 5.9 (2.50-14.05)
Surgeris 46/120 (39) Any subominal ^b 28/46 (61) Abdominal surgery ^b 7/120 (6) Other Invasive devices ^b 65/120 (54) > I CVC at T0 4/120 (3)	87/293 (30) 40/87 (46)		
Any surgery ^b 46/120 (39) Any abdominal ^b 28/46 (61) Abdominal surgery ^a 7/120 (6) Other Invasive devices ^a 65/120 (54) > 1 CVC at T0 4/120 (3)	40/87 (46)	1.28 (0.69-2.37)	
Any abdominal ^b 28/46 (61) Abdominal surgery ^a 7/120 (6) Other Invasive devices ^a 65/120 (54) >1 CVC at T0 4/120 (3)	40/87 (46)	1.28 (0.09-2.37)	
Abdominal surgery ^a 7/120 (6) Other Invasive devices ^a 65/120 (54) >1 CVC at T0 4/120 (3)		1.54 (0.83-2.89)	
Other Invasive devices ^a 65/120 (54) >1 CVC at T0 4/120 (3)	6/293 (2)	3.49 (1.12-10.90)	
>1 CVC at T0 4/120 (3)	168/293 (57)	0.76 (0.46-1.26)	
	23/293 (8)	0.42 (0.14-1.27)	
Arterial lines ^b 17/120 (14)	54/293 (18)	0.66 (0.34-1.30)	
\geq 3 heel punctures ^c 31/102 (30)	23/247 (9)	4.01 (1.93-8.33)	5.36 (2.37-12.15)

Pathogen	GEE adjusted OR	(95% CI)
S. aureus	3.58	(2.29, 5.63)
Enterobacter spp	3.99	(2.07, 7.7)
E. coli	2.75	(1.19, 6.35)
Serratia spp.	39.17	(14.04, 108.24)
P. aeruginosa	24.68	(3.76, 162.15)
 Reported ratios – sterile site 1:27 (<i>Klebsiella</i>) Attack rates: 20% for <i>Pseud</i> 		. ,

Faculté de médecine Université de Montréal et du mo

	······································
Table 1 Overview of surveillance and infection control measures before and during the S. marcescens cluster of	colonisation
Surveillance and routine infection control measures before the detection of the S. marcescens cluster of colonisati	on
1. Pharyngeal and rectal swab on admission from each patient from the delivery room or other hospital	
2. Once weekly screening of all patients by pharyngeal and rectal swabbing	
3. Barrier precautions (coat and gloves) until colonisation status is known	
 Performance of hand hygiene measures according to WHO's "Five moments" Communication of findings between physician and microbiologists immediately after the first detection of path 	ala alard findiana
 Communication of minings between physician and microbiologists immediately after the first detection of path 6. All microbiological findings accessible to all departments involved via a joint electronic database 	siogical lindings
Additionally, measures of surveillance and routine infection control during the detection of the S. marcescens clu	ster of colonisation
 Implementation of weekly meetings of a task force comprising of neonatologists, ID physicians, microbiologis and a member of the local health authority 	, infection control practitioners
8. Strictly barrier precaution of colonised patients	
9. Increase in the patient to health care worker ratio (from 5:1 to 3:1)	
10. Cohorting of colonised patients and assignment of separated staff for colonised patients	
 Re-training in hand hygiene procedures for staff and parents 	
12. Information on outbreak and possible transmission routes provided to staff and parents	
 Implementation of single-use breast milk pump sets Increase in disinfectant concentration (see text for details) 	
15. Increase in orallocount concentration (see text for octalls)	
Dawczynski K. Infection 2016: DOI 10	1.1007/s15010-016 0922-

Do we need more screening?

- Allows for earlier detection of colonization and potential source for outbreak
- No evaluation of cost-effectiveness
- Vertical approach to IPAC vs. baseline infection control practices

VAP

- Definition difficult to implement; surveillance
 complex
- · New definition being evaluated (VAE) from CDC:
- VAC: \geq 2 days PEEP or FiO₂ stable or improving followed by increase in PEEP \geq 3cm H₂O or 20% increase in FiO₂ x \geq 2 days
- + IVAC: Infection-related VAC: systemic evidence of infection with antibiotics $x \geq 4$ days
- Possible VAP: IVAC + Gram+ (purulent) on sputum
- Probable VAP: IVAC + Gram+ + culture for pathogen or respiratory virus

CHU Salas

Université de Montréal Datasan A

Université de Montréal

VAP (Pedatric adaptation)

- VAC: ≥ 2 days MAP or FiO₂ stable or improving followed by increase in MAP ≥ 4 or 25% in FiO₂ x ≥ 2 days
- Correlated with mortality, longer LOS and ventilation in PICU/NICU
- IVAC: Infection-related VAC: systemic evidence of infection with antibiotics x \geq 4 days
- Possible VAP: IVAC + Gram+ (purulent) on sputum
- Probable VAP: IVAC + Gram+ + culture for pathogen or respiratory virus

Corcoros NM. Crit Care Med. 2016;44(1):14-22.

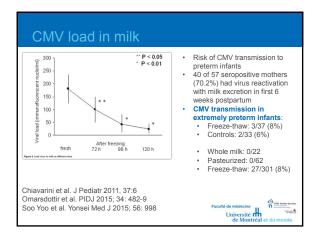
VAP prevention

- · Clear recommendations:
- Avoid intubation and decrease duration of intubation
- Regular oral care
- Minimize breaks in ventilator circuit
- Only change circuit if soiled
- No systematic review of impact of in-line suctioning on VAP – however, was shown to decrease hypoxia and decrease risk of change in heart rate

CA-UTI

- Incidence low in NICU urinary catheter use is low
- No prevention guidelines

Breast m	nilk – Admini	stration err	or


- · Handle as blood/body fluid exposure with disclosure test mothers, not babies
- Risk evaluation based on:
 - Age of newborn at time or exposure
 - Gestational age at delivery
 - Potential effect of transmission - Health/infectious status of donor mother and « recipient » mother.

11:

Course of

Université de Montréal

Viral agents	Contraindication to breastfeeding
HIV	YES
HBV	NO
HCV	NO unless cracked/bleeding nipples
CMV	NO
HTLV-I/II	YES
	de Montréal et du mondi

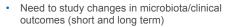
Breast milk

- Mother's own milk
- Donor breast milk
 - Volunteers screened for viral agents and syphilis
 Milk: Holder pasteurization (62°C for 30 minutes)

 - Batches screened before release
- Expressed BM: in glass or food-grade plastic containers . with tight-fitting lids or plastic bags designed for human milk storage
 - Container should be labeled with infant's full name, medical record number, date/time expression
- Storage:
 - Freshly expressed: 4°C up to 96h or frozen up to 3 months_{et} - Thawed BM: refrigerated and used in 24h

Université m de Montréal

- · Milk technicians to assist with storage, labelling, handing and dispensing of expressed human ΒM
- · Cost-effective over time, improve quality, enhance family satisfaction
- ** Yearly competence training



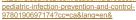
12

Conclusions

- HAIs in the NICU differ from everywhere else. Children are not small adults, neonates are not just small children
- Infants should be considered as having their unique microbiota that should not be shared with others
- HAI impacts long-term development
- Balance between impact on microbiota and preventive measures

- Need to refine surveillance definitions to be specific to NICU conditions for indicators to reflect reality
- Infection control program in the NICU needs to be multi-pronged and multidisciplinary – improved practice, helpful technology and stewardship, regardless of etiology
- · But to improve, need to be able to measure

112


Contractor of

Université na de Montréal

More references

- The PIDS Handbook of Pediatric Infection Prevention and Control - Editors: Kristina A. Bryant, MD et Judith A. Guzman-Cottrill, DO; Oxford Press, 2019.
 - Chapter 3: Device-Related Infections in the NICU (Quach C)
 Chapter 7: Breast Milk Handling and Misadministration (Fisher D)
- Johnson J, Quach C*. Outbreaks in the Neonatal Intensive Care Unit: A Review of the Literature. Current Opinion in Infectious Diseases, 2017

https://global.oup.com/academic/product/handbook-ofpediatric-infection-prevention-and-control-

