

Disclosures

 I have received a research grant from SAGE for a project on CLABSI risk factors in the NICU (ended in 2015)

Objectives

• Outline the infection prevention challenges that are unique to the neonatal intensive care unit

What is unique about a neonate?

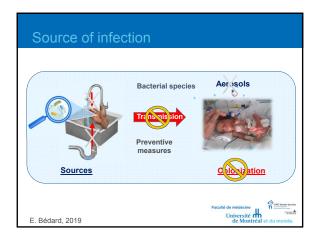
- <u>Microbiota</u>: sum of all microbial life living in and on the human body and depends on what/who we have encountered.
- In utero: sterile/ near-sterile environment
- · Fine balance between:
 - Preventing HAI
- · Modifying unique microbiota

When normal is OR/NICU?

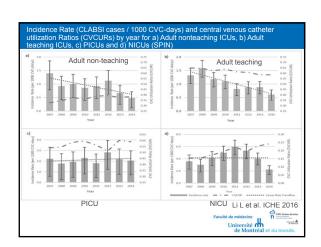
- Newborns born by c-section and cared for in our NICU/nursery:
 - Microbiota from hospital, HCP and other babies...
- Almost 20 years ago, the AAP said:

"Each neonate should be approached as though he or she harbored colonies of unique flora that should not be transmitted to any other neonate"

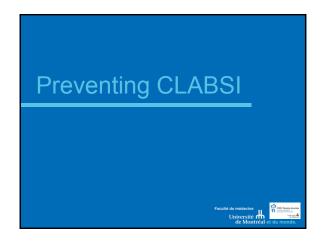
AAP, American College of Obstetricians and Gynecologists. Infection control. In: Hauth JC, Merenstein GB, eds. Guidelines for Perinatal Care, 4th edn. Elk Grove Village: AAP, 1997.251.



· Microorganisms found on NICU surfaces before being found in infants' gut 2 (4%) 2 (4%) 41 (82%) 1 (2%) 27 (54%) 48 (96%) · Reservoir: NG tubes, 4 (8%) 1 (2%) 6 (12%) 1 (2%) incubators and sinks Other high touch areas: 18 (36%) 10 (20%) 7 (14%) 20 (40%) 8 (16%) 7 (14%) Cell phone: 2 (4%) 1 (2%) 2 (4%) 0 3 (6%) 0 Beckstrom AC. J Perinatol 2013; 33: 960-3 Brooks B, Microbiome. 2014;2:1. Université de Montréal

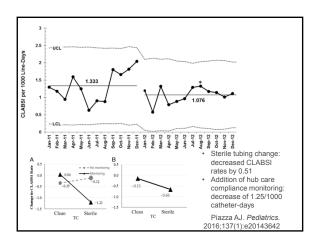

Impact of HAIs in NICU

- · Two-fold increase in death
- · BSI associated mortality:
- CoNS infections: 1.8%
- Non-resistant GNR: 10.5%
- MDR GNR: 28.6%
- CoNS sepsis: 5.6x increase in CP at 18-24 mo.


Goldmann DA. J Infect Dis. 1983;147:635-41; Blanchard AC. Clin Perinatol. 2015; 42:119-132; 1sai under the Pediatrics. 2014;133:e322-9; Shah DK. J Pediatr. 2008;153:170-5, 5 e1; Schlapbabilityrsite in de Montreal et di

		33%: source of outbreak not
Table 1. Pathogens respons outbreaks reported in the literatur	identified • 54%: GNR	
Bacterial (cum. outbreaks) (no. of individual outbreaks)	Fungal (no. of individual outbreaks)	5470. ON
Gram-positive [9]	Candida albicans (1)	
Enterococcus faecium (1)	Candida parapsilosis (2)	
Staphylococcus aureus (7)		
Staphylococcus epidermidis (1)	Viral (no. of individual outbreaks)	
	Human rhinovirus C (1)	
Gram-negative [21]	Parainfluenza-3 (1)	
Acinetobacter baumannii (1)	Respiratory syncytial virus (3)	
Burkholderia cepacia (3)		
Escherichia coli (3)	Parasite (no. of individual outbreaks)	Johnson J. Curr Op Infect Dis
Enterobacter ludwigii (1)	Cimex hemipterus (1)	2017
Klebsiella pneumoniae (7)		CIRU Sainter-Just
Pseudomonas aeruginosa (1)		Faculté de médecine
Serratia marcescens (5)		Université ch de Montréal et du monde.

Birth-weight category	No. of locations†	No. of CLABSIs	Central line days	Pooled mea
≤750 g	389 (345)	403	191,246	2.1
751-1,000 g	411 (354)	210	156,909	1.3
1,001-1,500 g	429 (385)	136	173,835	0.8
1,501-2,500 g	433 (349)	91	161,626	0.6
>2,500 g	432 (334)	134	182,144	0.7


NICU staffing – CLABS

Guidelines: 3-4:1 (lower acuity) to 1:1 (higher acuity)

Variables	OR	95%CI
<95% planned staffing	1.47	1.11, 1.95
BW: 500-749g 750-999a	3.17	1.85, 5.45 1.47, 3.53
1000-1249a	1.36	0.86, 2.14

NEO-KISS

Leistner R. Antimicrob Resist Infect Contr 2013; 2: 11

Dressing/skin cleansing

· CHG/alcohol vs. polyurethane /povidone-iodine

Sepsis without a source: RR 1.06 (95%CI 0.75, 1.52)
 CLABSI: RR 1.18 (95%CI 0.53, 2.65)
 Catheter colonization: RR 0.62 (95%CI 0.45, 0.86)
 Contact dermatitis: RR 43.06 (95%CI 2.61, 710.44)

Lai NM. Cochrane Database Syst Rev. 2016; CD011082.

Antimicrobial locks NO data on development of resistance • Confirmed CLABSI: RR 0.15 (95%CI 0.06, 0.4) • Suspected CLABSI: RR 0.65 (95%CI 0.22, 1.92) • All CLABSI: RR 0.25 (95%CI 0.12, 0.49) • Mortality: RR 0.12 (0.01, 2.13) Figure 4. Forest plot of comparison: I Antibiotic lock versus no antibiotic lock, outcome: I.I Confirmed catheter-related infections. | Study or Subgrove | Events | Total | Events |

	ks in pedi					
	ct measure of catheter- 4 (50%) studies)	elated infect	ions rate	s comparing l	ocks in clinical stu	dies on pediatric
Study	Intervention	Control	Participants		CRI Ratios	CRI Ratios
Abu-El-Haija (2014)	Ethanol 70%	Heparin	7			CRR: 0.34 (0.16-0.71)
Schoot (2015)	Ethanol 70%	Heparin	307			HR: 0.53 (0.29-0.98)
Handrup (2013)	Taurolidine-citrate-heparin	Heparin	112			IRR: 0.26 (0.09-0.61)
Filippi (2007)	Heparinized Saline + fusidic acid	Heparinized saline	103			RR: 0.28 (0.13-0.6)
	ct measure of catheter-r 2 (100%) studies)	elated infecti	ons com	o 0.5 Favors intervention paring locks in	Ratios 1.5 (95% CI) Favors control	n pediatric
Study	Intervention	Control	Participants		CRI Ratios	CRI Ratios
Oliveira (2012)	Ethanol 70%	Heparin	53	·•		RR: 0.19 (0.12-0.32)
Taylor (2015)	Antibiotic locks	Heparinized saline	271			
			2/1	-	- 1	RR: 0.19 (0.12-0.32)
		reparinted sainte	2/1	0 0.5 Favors intervention	1 1.5 Ratios (95% CI) Favors control	
	ine-citrate locks see prevention need	em most ef	fective	Favors intervention	Ratios	

Other interventions

- · CHG sponges:
 - Reduces CLABSI rates in adult population (1.3 to 0.4/1000 catheter-days)
 Not shown to be better than best practices in PICU
 No data in NICU 46% of NICUs were using in 2012 (US>Canada)

 - NHS recommends if used to limit to > 27 weeks and at least 7
- Antimicrobial impregnated CVC:
 - Silver-zeolite impregnated UVL: RR 0.11 (95% CI 0.01, 0.87) but only one study
- Ethanol lock: no data in neonatal population
- Desinfectant caps: no data in neonatal population
 - Risk of backward leakage and absorption

Balain M. Cochrane Syst Rev 2015 (9)

TABLE 1. Baseline Characteristics of Neonatal CLABSI Cases and Their Controls^a Cases (n = 120), Controls (n = 293), No. (%) No. (%) Male sex Mean gestational age CVC dwell time at T0 (matching) (IQR) Singleton pregnancy Spontaneous vaginal delivery Concomitant pathologies^b Apneas + bradycardias Respiratory distress syndrome Patent ductus arteriosus Intraventricular hemorrhaes^c hemorrhaes^c Necrotizing enterocolitis intra-abdominal pathology^c Ostomies^c ≥1 surgery^c 76 (63) 30.7 wk 10 (7–16) 150 (51) 29.8 wk 9 (7–14) 118 (40) 76 (26) Dahan M. Infect Control Hosp Epidemiol 2016; 37: 1446-52 72 (25) 35 (12) 30 (25) 9 (7.5) 14 (12) 35 (29) CRU Salaste-Justine Service Salaste Justine Service Salaste Justine Service Salaste Ser 24 (8) 87 (30) 40/87 (46) 11(9) 46 (39) 28/46 (61) ≥1 surgery^f ≥1 abdominal surgery^e

	Case (n = 120), No. (%)	Control (n = 293), No. (%)	Univariate OR (95% CI)	Multivariate OR (95% CI
Male sex	76 (63)	150(51)	1.7 (1.05-2.63)	1.76 (0.98-3.16)
Intra-abdominal pathology ^a	35/120 (29)	33/293 (11)	3.39 (1.81-6.36)	5.9 (2.50-14.05)
Surgeries				
Any surgery ^b	46/120 (39)	87/293 (30)	1.28 (0.69-2.37)	
Any abdominal ^b	28/46 (61)	40/87 (46)	1.54 (0.83-2.89)	
Abdominal surgery ^a	7/120 (6)	6/293 (2)	3.49 (1.12-10.90)	
Other Invasive devices ^a	65/120 (54)	168/293 (57)	0.76 (0.46-1.26)	
>1 CVC at T0	4/120(3)	23/293 (8)	0.42 (0.14-1.27)	
Arterial lines ^b	17/120 (14)	54/293 (18)	0.66 (0.34-1.30)	
≥3 heel punctures ^c	31/102 (30)	23/247 (9)	4.01 (1.93-8.33)	5.36 (2.37-12.15)

Pathogen	GEE adjusted OR	(95% CI)
S. aureus	3.58	(2.29, 5.63)
Enterobacter spp	3.99	(2.07, 7.7)
E. coli	2.75	(1.19, 6.35)
Serratia spp.	39.17	(14.04, 108.24)
P. aeruginosa	24.68	(3.76, 162.15)

- Reported ratios sterile site infections: colonizations: 1:6 (Serratia) vs. 1:27 (Klebsiella)

 Attack rates: 20% for *Pseudomonas* and 50% for *Serratia* during outbreaks

Reichnert F. Pediatr 2016; e2 0152860

able 1	Overview of surveillance and infec-	tion control measures	before and during the S	marcescens cluster of colonisation

- Table 1 Overview of surveillance and infection control measures before and during the S. macrescens cluster of colonisation

 Surveillance and routine infection control measures before the detection of the S. macrescens cluster of colonisation

 1. Pharyngeal and rectal swab on admission from each patient from the delivery room or other hospital

 2. Once weekly screening of all patients by pharyngeal and rectal swabbing

 3. Barrier prescutions (cot and gloves) until colonisation status is known

 4. Performance of hand hygiene measures accessing to WHO's "Five moments."

 5. Communication of findings between physician and microbiologists immediately after the first detection of pathological findings

 6. All microbiological findings accessible to all departments involved via a joint electronic database

 Additionally, measures of surveillance and orutine infection outfor during the detection of the S. macrescens cluster of colonisation

 7. Implementation of weekly meetings of a task force comprising of neonatologists, ID physicians, microbiologist, infection control practitioners and a member of the local health authority

 8. Strictly burrier presention of colonised patients

 10. Coloniting of colonised patients and assignment of separated staff for colonised patients

 11. Re-training in land physice procedures for staff and parents

 12. Information on outbreak and possible transmission routes provided to staff and parents

 13. Implementation of single-are treats milk pump sex

 14. Increase in distinctant concentration (see text for details)

Dawczynski K. Infection 2016: DOI 10.1007/s15010-016-

Do we need **more** screening?

- · Allows for earlier detection of colonization and potential source for outbreak
- · No evaluation of cost-effectiveness
- · Vertical approach to IPAC vs. baseline infection control practices

VAP

- Definition difficult to implement; surveillance complex
- · New definition being evaluated (VAE) from CDC:
- VAC: ≥ 2 days PEEP or FiO₂ stable or improving followed by increase in PEEP ≥ 3cm H₂O or 20% increase in FiO₂ x ≥ 2 days
- IVAC: Infection-related VAC: systemic evidence of infection with antibiotics x ≥ 4 days
- Possible VAP: IVAC + Gram+ (purulent) on sputum
- Probable VAP: IVAC + Gram+ + culture for pathogen or respiratory virus

VAP (Pedatric adaptation)

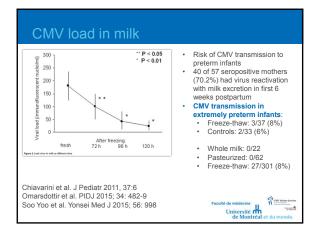
- VAC: ≥ 2 days MAP or FiO₂ stable or improving followed by increase in MAP ≥ 4 or 25% in FiO₂ x ≥ 2 days
 - Correlated with mortality, longer LOS and ventilation in PICU/NICU
- IVAC: Infection-related VAC: systemic evidence of infection with antibiotics x ≥ 4 days
- Possible VAP: IVAC + Gram+ (purulent) on sputum
- Probable VAP: IVAC + Gram+ + culture for pathogen or respiratory virus

Corcoros NM. Crit Care Med. 2016;44(1):14-22.

VAP prevention

- · Clear recommendations:
- · Avoid intubation and decrease duration of intubation
- Regular oral care
- · Minimize breaks in ventilator circuit
- Only change circuit if soiled
- No systematic review of impact of in-line suctioning on VAP – however, was shown to decrease hypoxia and decrease risk of change in heart rate

CA-UTI


- Incidence low in NICU urinary catheter use is low
- · No prevention guidelines

Breast milk – Administration error

- Handle as blood/body fluid exposure with disclosure test mothers, not babies
- Risk evaluation based on:
 - Age of newborn at time or exposure
 - Gestational age at delivery
 - Potential effect of transmission
 - Health/infectious status of donor mother and « recipient » mother.

Viral agents	Contraindication to breastfeeding
HIV	YES
HBV	NO
HCV	NO unless cracked/bleeding nipples
CMV	NO
HTLV-I/II	YES
	de Montréal et du mond

Breast milk

- · Mother's own milk
- · Donor breast milk

 - Volunteers screened for viral agents and syphilis
 Milk: Holder pasteurization (62°C for 30 minutes)
 - Batches screened before release
- Expressed BM: in glass or food-grade plastic containers with tight-fitting lids or plastic bags designed for human milk storage
 - Container should be labeled with infant's full name, medical record number, date/time expression
- Storage:
 - Freshly expressed: 4°C up to 96h or frozen up to 3 months
 - Thawed BM: refrigerated and used in 24h f

- · Milk technicians to assist with storage, labelling, handing and dispensing of expressed human
- · Cost-effective over time, improve quality, enhance family satisfaction
- ** Yearly competence training

Conclusions

- HAIs in the NICU differ from everywhere else. Children are not small adults, neonates are not just small children
- Infants should be considered as having their unique microbiota that should not be shared with others
- · HAI impacts long-term development
- Balance between impact on microbiota and preventive measures

- Need to study changes in microbiota/clinical outcomes (short and long term)
- Need to refine surveillance definitions to be specific to NICU conditions for indicators to reflect reality
- Infection control program in the NICU needs to be multi-pronged and multidisciplinary – improved practice, helpful technology and stewardship, regardless of etiology
- · But to improve, need to be able to measure

More references

- The PIDS Handbook of Pediatric Infection Prevention and Control - Editors: Kristina A. Bryant, MD et Judith A. Guzman-Cottrill, DO; Oxford Press, 2019.
 - Chapter 3: Device-Related Infections in the NICU (Quach C)
 Chapter 7: Breast Milk Handling and Misadministration (Fisher D)
- <u>Johnson J.</u> Quach C*. Outbreaks in the Neonatal Intensive Care Unit: A Review of the Literature. Current Opinion in Infectious Diseases, 2017

https://qlobal.oup.com/academic/product/handbook-of-pediatric-infection-prevention-and-control-9780190697174?cc=ca&lanq=en&

