INSIDE:

Epidemiology of gastroenteritis outbreaks in Ontario long-term care homes, 2007-2010

2014 National Education Conference
Accelerated Hydrogen Peroxide

The world’s **FIRST & ONLY** disinfectant technology formulated for:

- Surfaces
- Devices
- Hands

E V O L U T I O N O F A N A C T I V E

2014
- AHP becomes the **FIRST** EPA registered hydrogen peroxide disinfectant to receive DfE (Design for the Environment) approval.

2012
- The world’s **FIRST** hydrogen peroxide based antimicrobial hand wash powered by AHP launches in Europe.

2011
- AHP becomes Canada’s **FIRST** 5 minute concentrated intermediate level hospital grade disinfectant with EcoLogo certification.

2008
- AHP receives FDA registration as the **FIRST** hydrogen peroxide based high level disinfectant for flexible endoscopes not containing peracetic acid.

2007
- AHP is the **FIRST** disinfectant technology to receive EcoLogo approval in Canada as a green certified disinfectant cleaner.

2007
- AHP receives registration in Canada as the **FIRST** sporicidal surface disinfectant effective against *C. difficile* spores.

2006
- AHP receives registration in the United States as the **FIRST** hospital grade surface disinfectant with a 1-minute contact time and a Category IV Safety Rating (the lowest EPA toxicity rating).

2001
- AHP receives registration in Canada as the **FIRST** hydrogen peroxide based high level disinfectant and chemical sterilant with a 14 day re-use claim.

1998
- AHP receives registration in Canada as the **FIRST** hydrogen peroxide based hospital grade disinfectant and is awarded a general Virucide claim for its effectiveness against non-enveloped viruses (such as Poliovirus and Norovirus).
Disinfectants are the first line of defence against pathogens wanting to wage war on your healthcare facility. But is your disinfectant really providing you with the protection your patients and staff deserve? Consider the evidence:

• Some disinfectants promise disinfection in two minutes but are unable to attain the requisite wet dwell time to achieve compliance. If they dry too quickly, they’re simply not doing the job.

• Some disinfectants play the numbers game by including a long list of bactericidal and virucidal kill claims but often do not include important ones like Norovirus. If the claims are not relevant, you may not be killing what you need to.

• Some disinfectants claim to feel better or have pleasant scents but still require personal protective equipment. How effective are your disinfection outcomes if your staff are concerned about their safety?

“OMG! We think we have an HAI”

Reduce your exposure to HAIs, visit www.omgwehaveanHAI.com to learn more.
IMAGINE IF DISINFECTING
AN ENTIRE ROOM
WAS JUST THIS EASY.

Introducing the
nocospray system
enhanced disinfection: simplified

Imagine disinfecting a room with just the push of a button. Now imagine achieving a 99.9999% reduction in a room that previously housed C. difficile. Nocospray can do both.

Developed in Europe and now available in Canada, the Nocospray System, when used in conjunction with mechanical cleaning, empowers you to enhance your disinfection at the push of a button.

Visit us on the web:
www.nocospray.ca
or call us at 1.800.363.2381
The Canadian Journal of INFECTION CONTROL

Revue canadienne de PRÉVENTION DES INFECTIONS

The official journal of Infection Prevention and Control Canada • Prévention et contrôle des infections Canada

Vol. 29 No. 14 Spring 2014

FEATURES

Epidemiology of gastroenteritis outbreaks in Ontario long-term care homes, 2007-2010 .. 9

2014 National Education Conference .. 29

DEPARTMENTS

Editorial .. 7

IPAC Canada News

President’s Message .. 21

Message de le président .. 23

From the Executive Desk .. 24

New Clinical Editor .. 75

Board Elections ... 77

CIC Graduates ... 80

IPAC – Central South Ontario (CSO) news 83

The Canadian Journal of Infection Control is the official publication of Infection Prevention and Control Canada (IPAC Canada). The Journal is published four times a year by Craig Kelman & Associates, Ltd. and is printed in Canada on recycled paper. Circulation 3000.

©2014 Craig Kelman & Associates Ltd. All rights reserved. The contents of this publication, which does not necessarily reflect the opinion of the publisher or the association, may not be reproduced by any means, in whole or in part, without the written consent of the publisher.

ISSN – 1183 - 5702

Indexed/abstracted by the Cumulative Index to Nursing and Allied Health Literature, SilverPlatter Information Inc. and EBSCO.

The Canadian Journal of Infection Control is a ‘Canadian periodical’ as defined by section 19 of the Canadian Income Tax Act. The deduction of advertising costs for advertising in this periodical is therefore not restricted.

www.ipac-canada.org

SUBSCRIPTIONS

Subscriptions are available from the publisher at the following rates: All Canadian prices include GST. Prices are listed as personal/institutional. Canada: $30/$38 (GST # 100761253); USA (in US funds): $28/$36; Other countries: $45/$60. Subscriptions do not include online access to the journal. Members have online access to the current issue.

VISION

IPAC Canada will be a major national and international leader and the recognized resource in Canada for the promotion of best practice in infection prevention and control.

MISSION

IPAC Canada is a national, multidisciplinary association committed to the wellness and safety of Canadians by promoting best practice in infection prevention and control through education, standards, advocacy and consumer awareness.

© Craig Kelman & Associates Ltd. All rights reserved.
C. diff spores* killed in 3 minutes.

Nothing else registered by Health Canada is as fast!**

We’re also registered to kill another 46 pathogens in 1 minute**

IT’S ON OUR LABEL. IS IT ON YOURS?

For more information, contact your Clorox sales representative or email: healthcare@clorox.com or call 1.866.789.4973.

*Clostridium difficile spores. **Based on Health Canada master label and in-market labels of leading brands.
**Use as directed on hard non-porous surfaces. See product label for complete list of organisms. ©2013 Clorox Professional Products Company.
Executive Officers

President

Bruce Gamage, RN, BSN, CIC
Network Manager
BC Provincial Infection Control Network
Suite 504, 1001 W. Broadway, Km. 514
Vancouver, BC V6H 4B1
Tel: 604-875-4844 ext. 22981
Fax: 604-875-4373
bgamage@phsa.ca

President-elect

Suzanne Rhodenizer Rose, RN, BScN, CIC
Infection Healthcare Quality and Patient Safety
Infection Prevention and Control Nova Scotia
1894 Barrington Street, Box 488
Halifax NS B3J 2A8
Tel: 902-722-1244 Fax: 902-428-2449
Suzanne.Rhodenizer-Rose@gov.ns.ca

Past President

Jim Gauthier, M1, CIC
Provider Care
752 King Street W, Postal Bag 603
Kingston ON K7L 4X3
Tel: 613-548-5567 ext 5754
Fax: 613-540-6117
gauthji2@provhealthcare.ca

Secretary

Marilyn Weinmaster, RN, BScN, CIC
Infection Control Practitioner
Regina Di Agappe Health Region
430 Pioneer Drive, Regina, SK, S4P 6L8
Phone: 306-565-6127 Fax: 306-359-1402
marilyn.weinmaster@regionalhealth.ca

Past President

Jim Gauthier, M1, CIC
Provider Care
752 King Street W, Postal Bag 603
Kingston ON K7L 4X3
Tel: 613-548-5567 ext 5754
Fax: 613-540-6117
gauthji2@provhealthcare.ca

Secretary

Marilyn Weinmaster, RN, BScN, CIC
Infection Control Practitioner
Regina Di Agappe Health Region
430 Pioneer Drive, Regina, SK, S4P 6L8
Phone: 306-565-6127 Fax: 306-359-1402
marilyn.weinmaster@regionalhealth.ca

Other Positions

Archivist

Mary LeBlanc, RN, BN, CIC
RRA2, Civic #11763
Tyne Valley, PE C0B 2C0
nanaandrapa@royn2.pe.ca

Clinical Editor – Canadian Journal of Infection Control

Pat Piaskowski, RN, HBOCN, CIC
Network Coordinator
Public Health Ontario — Northwestern Ontario IC Network
1894 Barrington Street, Box 488
Halifax NS B3j 2A8
Fax: 902-722-1244 Fax: 902-428-2449
Suzanne.Rhodenizer-Rose@gov.ns.ca

Director

Mandy Deeyes, BScN, RN, CIC
Network Coordinator
Public Health Ontario — Simcoe Muskoka Infection Control Network
80 Victoria Street, Suite 7, Orillia ON L3V 7E4
Tel: 705-418-0253 Fax: 705-326-5413
Mandy.deeyes@oahpp.ca

Director

Victor Leung, MD, FRCP(C)
Infection Prevention and Control Physicain
Providence Health Care
1190 Hamby Street, 4th Floor, Vancouver BC V6Z 2K5
Tel: 604-806-0357 Fax: 604-806-8165
vleung@provhealthcare.bc.ca

Director (to be elected in May 2014)

Director

Michael Gardam, MSc, MD, CM, FRCP(C)
Medical Director, Infection Prevention and Control and Tuberculosis Clinic
University Health Network
200 Elizabeth Street, Toronto ON M5G 1A9
Tel: 416-340-3758 Fax: 416-340-5074
michael.gardam@uhn.on.ca

Membership Services Office

Executive Director

Gerry Hansen, BA
PO Box 46125 RPO Westdale,
Winnipeg MB R3J 3S3
Tel: 204-987-9999 ext. 999-7111
Fax: 204-895-9595
gerryhansen@ipac-canada.org

Administrative Assistant

Kelli Wagner
Tel: 204-488-5027 Fax: 204-488-5028
Toll-Free: 1-855-488-5027
admin@ipac-canada.org

Deliveries only:
67 Bergman Crescent, Winnipeg MB R3R 1Y9
VanishPoint® syringes are available with a variety of needle sizes and gauges. Syringes are color-coded for needle gauge.

Activated VanishPoint® syringes require less disposal space than other syringes and prevent disposal-related injuries.

VanishPoint® tube holders are used with standard blood collection needles and vacuum tubes for safe blood collection.

Other Available Safety Products

- **Patient Safe® syringe**
- **VanishPoint® IV catheter**
- **VanishPoint® blood collection tube holder**

RETRACTABLE TECHNOLOGIES, INC.

410 S. Lobo Lane • Little Elm, Texas 75068-0009 • USA
Tel: (972) 294-1770 • Fax: (972) 294-4400
Toll Free: 1-888-703-1010
rtnsales@vanishpoint.com • rti.intl@vanishpoint.com
A rose by any other name…

Congratulations to the board and members of Infection Prevention and Control Canada (IPAC Canada) for the January 1, 2014 change in name from the previous Community and Hospital Infection Control Association Canada (CHICA-Canada). The new logo is fresh and ties in clearly with the new name and a Canadian identity.

For those who have been familiar with the previous name, acronym and logo, this new name represents more than just a new letterhead or website banner. It represents a recognition of the importance of branding and name recognition for an organization. It also recognizes the impacts of a new name and logo which reach beyond the organization.

In the years prior to the Internet the reach and impact of names and branding was limited to hard copy print materials. These materials included letterhead, journal titles, posters and brochures to name a few. Word of mouth also played a role in branding and allowed persons sharing messages to expand on and explain acronyms. Many members likely recall explaining the acronym CHICA-Canada to others in the healthcare field. Although the name and acronym of CHICA-Canada had brand recognition in the field, it was less familiar to others.

With the web- and social media-connected world that exists now, it is increasingly important to recognize that the reach of an organization is unlimited. Messaging and branding of an organization must be clear to all who encounter the organizations web and social media presence. Members and potential members should be able to identify with the new name and logo, and in the case of IPAC Canada, the linkage between members and the organization is very explicit.

Many organizations, facilities, and agencies have embraced the concept and practices of both infection prevention and infection control (IPAC). This grew out of the previous notion of infection control and includes the important concepts and practices that comprise infection prevention. In many cases, the term “infection control practitioner” has been discarded and replaced with the more apt “infection control professional.” All of these changes reflect growth in our field and recognition of not only the broad scope of IPAC practice but also the infection control professional (ICP) role.

The new name “Infection Prevention and Control Canada (IPAC Canada)” now clearly states the mandate of the organization and the role of the members in both preventing and controlling infections. ICPs can challenge their programs and organizations to ensure that program and role titles are in turn branded to truly reflect the nature and scope of the field of infection prevention and control.

Complimentary Session Recordings for All Attendees through the IPAC Canada Live Learning Centre

IPAC Canada is excited to launch its newest educational resource, the IPAC Canada Live Learning Centre. This online portal connects you to recordings of our most anticipated sessions from the 2014 National Education Conference. Catch up on sessions you miss, review industry education and continue your professional development between IPAC Canada conferences.

All 2014 National Education Conference attendees will receive complimentary access to this resource. You will be notified post-conference when sessions have been posted online.
COACH YOUR HYGIENE TEAM TO WIN!

WORKFORCE READINESS
Train-The-Trainer
Routine Practices and Additional Precautions
Technical Training Design and Delivery
Technical Competency Assessments – Leadership or Hourly Staff

STANDARD WORK
Cleaning Process Design and Implementation
Environmental Infection Prevention and Control
Workload and Staffing Requirement Reviews
Work Routine and Master Staffing Plan
Interim and Restorative Floor Care Design

HYGIENE TECHNOLOGY
Objective Product Review and RFP Oversight
Implementation Support

PERFORMANCE OUTCOMES
Audit Training (Adenosine Triphosphate, Floresent Marking, Visual Cleanliness, Cleaning Process Compliance)
System Sourcing and Implementation
Independent Validation of Findings (Third Party Audits)
Patient / Employee Rounding

To find out how our team can help your team, improve environmental hygiene outcomes, contact us:
Phone: 905-361-8749
Email: info@hygieneperformancesolutions.com
Web: www.hygieneperformancesolutions.com
Epidemiology of gastroenteritis outbreaks in Ontario long-term care homes, 2007-2010

INTRODUCTION

In Ontario, there were 625 LTCs as of April 31, 2010, home for over 76,000 residents (1). Long-term care homes (LTCs) provide residential accommodation and care to persons aged 18 years and older who require assistance with activities of daily living and/or full-time nursing care (2). Ontario LTCs were funded and licensed by the Ontario Ministry of Health and Long-Term Care (MOHLTC). Licensees include municipal governments, corporations, partnerships, or sole proprietors who operate for profit or not for profit (2). LTCs are required to report all reportable diseases including gastroenteritis outbreaks (3) to the Medical Officer of Health (MOH) of the jurisdictional public health unit (PHU), as per the Health Protection and Promotion Act (Section 27(2)) (4). The case and outbreak investigation information collected by the PHU is entered into the integrated Public Health Information System (iPHIS) (5) which facilitates both provincial and national surveillance of reportable communicable diseases (4).

The frequent person-to-person contact amongst a vulnerable population increases the risk of gastroenteritis outbreaks in the semi-closed, LTC population (i.e., few changes to the resident population of illness. Long-term care homes need more effective infection prevention and control programs to reduce morbidity. Improved identification of the aetiologic agent and mode of transmission would facilitate decision-making about outbreak control measures and surveillance for outbreak-related aetiologic agents.

KEY WORDS: Epidemiology; gastroenteritis; infection control; long-term care; outbreak.

The frequent person-to-person contact amongst a vulnerable population increases the risk of gastroenteritis outbreaks in the semi-closed, LTC population (i.e., few changes to the resident population of illness. Long-term care homes need more effective infection prevention and control programs to reduce morbidity. Improved identification of the aetiologic agent and mode of transmission would facilitate decision-making about outbreak control measures and surveillance for outbreak-related aetiologic agents.
Gastroenteritis outbreaks are often associated with viral agents that are highly infectious, persist in the environment, and spread by fecal-oral route (7). Common viral outbreak-related agents include norovirus, other caliciviruses, rotavirus, adenovirus, and astrovirus (7).

Viral gastroenteritis is often characterized by an acute, self-limiting illness with sudden onset of vomiting and watery diarrhea lasting 1-10 days depending on the viral agent (8). However, evidence has shown that viral gastroenteritis is an important cause of prolonged diarrhea, dehydration, electrolyte imbalance (6, 7) and mortality amongst seniors (9) with an underlying medical condition(s), and/or suppressed immune function (7). Gastroenteritis outbreaks are also costly to residents in terms of disruption of services and activities and the psychological impact of isolation (10). LTCH owners may face increased operating costs related to personal protective equipment, additional staffing, staff sick time, staff replacement, and possibly legal or litigation costs (11).

The initial case(s) of viral gastroenteritis is often suspected to be acquired by consumption of contaminated food or water (16). However, outbreaks often involve secondary or tertiary viral transmission by multiple routes including person-to-person transmission (12, 13), airborne transmission of aerosolized infectious vomit (12), contact with contaminated surfaces (7), and sometimes ingestion of food contaminated by an infected food handler (13). Thus, the epidemiology and identification of the mode of transmission during a viral gastroenteritis outbreak can be complex.

The objective of this study was to describe the epidemiology of gastroenteritis outbreaks in LTCHs that occurred between January 1, 2007 and April 31, 2010.

METHODS

Study design
A retrospective cohort study design was used to identify and describe all gastroenteritis outbreaks in LTCHs. This study was reviewed and had received ethics clearance by the University of Guelph Research Ethics Board (REB# 11MY038).

Gastroenteritis outbreak definition
The MOHLTC defined a case within a gastroenteritis outbreak as a person who experienced at least one of the following: 1) two or more episodes of loose/watery bowel movements within a 24-hour period, or two or more episodes of vomiting within a 24-hour period, or 2) one episode of loose/watery bowel movements and one episode of vomiting within a 24-hour period, or 3) laboratory confirmation of a known gastrointestinal pathogen and at least one symptom compatible with gastroenteritis (i.e., vomiting, diarrhea, abdominal pain or tenderness) (14).

The MOHLTC defined an institutional gastroenteritis outbreak as the occurrence of gastroenteritis amongst patients, residents, or staff, in a given area, at a given time, beyond the normal baseline distribution based on surveillance data for the facility (15). Effective April 28, 2009 (16), confirmed outbreaks were defined as the occurrence of three or more cases with signs and symptoms compatible with infectious gastroenteritis in a specific unit or floor within a four-day period, or three or more units/floors having a case of infectious gastroenteritis within 48 hours (14).

Data sources
The MOHLTC provided the outbreak description data (17). Some missing outbreak description data (i.e., key dates related to the outbreak, case counts, and aetiologic agent) were obtained with consent from the jurisdictional PHU.

The outbreak data included: iPHIS-generated outbreak number (unique outbreak identifier), outbreak name (i.e., LTCH name-date outbreak declared (18)), date outbreak was reported to PHU, date of symptom onset of the first case, date of symptom onset of the last case, date outbreak was declared over by the PHU, the jurisdictional PHU name and identification number, disease group (i.e., institutional gastroenteritis), aetiologic agent(s), exposure name (i.e., LTCH name – floor/unit – date of exposure (18)), exposure setting type (i.e., hospital, LTCH, retirement home), mode of transmission (i.e., foodborne, item-to-person, person-to-person, waterborne, unknown), number of resident cases; number of residents at risk, number of staff cases, and number of staff at risk.

The MOHLTC provided the number of resident beds in operation by accommodation type for each LTCH in biannual format (March 31 and September 30) for each year from March 31, 2007 to March 31, 2010 (1). Given that the occupancy rate for LTCHs was 98.4% in 2007 (19) and was consistent at 99.8% in 2009 (20), the number of beds in operation prior to the symptom onset of the first case was used as both the number of residents at risk and the number of beds in operation for the summary statistics. For outbreaks that occurred between January 1, 2007 and March 30, 2007, the beds in operation on March 31, 2007 were used for summary statistics. For LTCHs that did not report an outbreak, the mean bed number for the study period was used for summary statistics.

The exposure setting type was verified to be a LTCH for each outbreak through cross-reference with the MOHLTC Master Numbering System (21) and MOHLTC Reports on Long-Term Care Homes website (2). LTCH ownership and funding type was obtained from publicly accessible websites, such as MOHLTC Reports on Long-Term Care Homes website (2), and individual LTCH websites.

Inclusion criteria
The study period was January 1, 2007 through April 31, 2010. Outbreaks were included in the study if the setting was a licensed long term care home in Ontario, the outbreak type was reported as enteric – institutional, the disease group was reported as institutional gastroenteritis, and the aetiologic agent(s) was reported to be norovirus, rotavirus, calicivirus, gastroenteritis unspecified agent, unknown, or the agent was missing. Outbreaks were excluded from the study where the outbreak name or exposure name mentioned a food item or water; or the mode of transmission was reported as foodborne and/or waterborne.
Calculating incidence
Incidence rates were calculated for each year and aetiological agent. The annual agent-specific incidence rate \(I_{LTCHs} \) of gastroenteritis outbreaks per 100 LTCHs was calculated as:

\[
I_{LTCHs} = \frac{\text{number of LTCH outbreaks during the year for each agent}}{\text{mean number of Ontario LTCHs in operation during the year}} \times 100
\]

The annual agent-specific incidence rate \(I_{bed-days} \) of LTCH resident cases of outbreak-associated gastroenteritis per 1000 bed-days was calculated as:

\[
I_{bed-days} = \frac{\text{number of outbreak-related resident cases in the year for each agent}}{(\text{mean number of resident beds in Ontario LTCHs} \times \text{days in the year})} \times 1000
\]

The resident attack rate (\(AR_{residents} \)) per outbreak was calculated as:

\[
AR_{residents} = \frac{\text{number of outbreak-related resident cases in the LTCH}}{\text{total number of resident beds in the LTCH}} \times 100
\]

The staff attack rate (\(AR_{staff} \)) per outbreak was calculated by:

\[
AR_{staff} = \frac{\text{number of outbreak-related staff cases in the LTCH}}{\text{total number of staff at risk in the LTCH}} \times 100
\]

Time periods
The date the outbreak was reported to the PHU was used as the date the outbreak was declared based on the assumption that the outbreak case definition was met when reported. The outbreak duration was the number of days from the date of symptom onset of the first case to the date of symptom onset of the last case. The time to report the outbreak to the PHU was the number of days from the date of symptom onset of the first case to the date the LTCH reported the outbreak to the PHU. For all periods, the first date was included in the count between the dates such that when the first and last date occurred on the same date, the number of days was recorded as one day.

Descriptive statistics
The gastroenteritis outbreaks were described by the number of beds in operation by accommodation type, funding type, year, month, season, aetiological agent(s), mode of transmission, resident attack rate, staff attack rate, outbreak duration and key outbreak-related dates.

The duration, resident and staff attack rates, and numbers of beds in the LTCHs were not normally distributed, and non-parametric statistics were used. LTCHs that reported an outbreak and LTCHs that did not report an outbreak were compared by the number of beds in operation using the Mann Whitney test (U) and the funding type using the chi-squared test goodness of fit test (2). The simple association between the duration and attack rates were individually assessed by the year and aetiological agent. For binary data, individual variables were compared with the Mann-Whitney test (U). For categorical data, individual variables were compared with the Kruskal-Wallis test (H). The number of outbreaks were compared by year, season, and aetiological agent using the chi-squared test (2) of independence (two categories) and goodness of fit (more than two categories). For comparisons involving the number of outbreaks for the partial year, January through April, the number of outbreaks was weighted to represent 66% of the expected outbreaks for the year, which assumes the same monthly distribution of outbreaks from 2007 to 2009. The changes over time in proportion of outbreaks reported as norovirus or unknown were compared with an approximation of the Cochrane-Armitage trend test (CA) (linear-by-linear association value multiplied by N / (N - 1)). For all analyses, the statistical significance level was set at \(\alpha = 0.05 \). Descriptive statistics were computed using SPSS® version 20 (22).

RESULTS

Demographics
The MOHLTC provided outbreak data for all reported gastroenteritis outbreaks and occupancy data for all 625 LTCHs in Ontario. Additionally, 25 (n = 36; 69.4%) PHUs returned information not found in the MOHLTC dataset. A total of 549 (87.8%) LTCHs reported an outbreak and 76 (12.2%) LTCHs did not report an outbreak during the study period.

LTCHs that reported an outbreak had a median of 120 beds (mean = 128.7), which was higher than LTCHs that did

“Outbreaks were excluded from the study where the outbreak name or exposure name mentioned a food item or water; or the mode of transmission was reported as foodborne and/or waterborne.”
not report an outbreak (median = 64; mean = 77.1) \(U_{N = 625} = 11360, Z = -6.4; p < .05\). The types of LTCH beds included 35031 basic beds (bedroom has 1-2 beds (post-1998) or 3 or more beds (pre-1998)) (2), 14298 semi-private beds (bedroom has 2 beds (2)), 25393 private beds, 614 interim beds (beds in a hospital that are subject to the long-term care program requirements (2)), 427 short term stay (respite and supportive care for a definite number of days (2)), and 375 convalescent beds (short-term stay for recovery of strength, endurance, or functioning (2)) (1).

The frequency of outbreaks reported for LTCHs of each funding type was proportional to the funding type for the population of LTCHs including 333 (91.2%) for profit, 119 (79.3%) non-profit, and 97 (88.2%) municipal LTCHs.

Missing data

Records with missing information included: date of symptom onset of the first case \(n = 4; 0.03\%\); date of symptom onset of the last case \(n = 140; 10.0\%\); date outbreak was declared over by the PHU \(n = 22; 1.6\%\); number of resident cases \(n = 53; 3.8\%\); number of staff cases \(n = 87; 6.2\%\); number of staff at risk \(n = 109; 7.8\%\).

Records with missing agent \(n = 30; 2.1\%\), missing mode of transmission \(n = 460; 31.1\%\) or the agent was reported as “gastroenteritis, unspecified” \(n = 729; 52.0\%\) were classified as “unknown.” Records with inconsistent information were excluded from summary statistics including: residents attack rates that exceeded 100\% \(n = 6; 0.01\%\); staff attack rates that exceeded 100\% \(n = 9; 0.01\%\); the date the outbreak was reported to the PHU when earlier than date of symptom onset of the first case \(n = 1; 0.01\%\), and when after the outbreak was declared over by the PHU \(n = 1; 0.01\%\).

Incidence

The annual incidence ranged from 49.6 to 66.3 outbreaks per 100 long-term care homes with 0.27 to 1.10 resident cases per 1000 bed-days (Table 1). Of

<table>
<thead>
<tr>
<th>Year</th>
<th>Primary Aetiologic Agent</th>
<th>Outbreaks</th>
<th>Resident Cases</th>
<th>Mean no. of LTCHs</th>
<th>Mean no. of resident beds in all LTCHs</th>
<th>Outbreaks per 100 LTCHs</th>
<th>Resident cases per 1000 bed-days</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Total</td>
<td>412</td>
<td>11010</td>
<td>622</td>
<td>75901</td>
<td>66.3</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td>249</td>
<td>5158</td>
<td>40.1</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Norovirus</td>
<td>152</td>
<td>5517</td>
<td>24.5</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotavirus</td>
<td>10</td>
<td>310</td>
<td>1.6</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calicivirus</td>
<td>1</td>
<td>25</td>
<td>0.2</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Total</td>
<td>318</td>
<td>7610</td>
<td>622</td>
<td>75954</td>
<td>51.1</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td>193</td>
<td>3904</td>
<td>31.0</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Norovirus</td>
<td>117</td>
<td>3582</td>
<td>18.8</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotavirus</td>
<td>6</td>
<td>89</td>
<td>1.0</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calicivirus</td>
<td>2</td>
<td>35</td>
<td>0.2</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Total</td>
<td>362</td>
<td>9872</td>
<td>623</td>
<td>76237</td>
<td>58.2</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td>191</td>
<td>3680</td>
<td>30.7</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Norovirus</td>
<td>160</td>
<td>5876</td>
<td>25.7</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotavirus</td>
<td>10</td>
<td>254</td>
<td>24.9</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calicivirus</td>
<td>0</td>
<td>-</td>
<td>0.8</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010*</td>
<td>Total</td>
<td>310</td>
<td>10182</td>
<td>625</td>
<td>76790</td>
<td>49.6</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td>128</td>
<td>3289</td>
<td>20.5</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Norovirus</td>
<td>181</td>
<td>6875</td>
<td>29.0</td>
<td>0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotavirus</td>
<td>1</td>
<td>18</td>
<td>0.2</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calicivirus</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1402</td>
<td>38674</td>
<td>2491</td>
<td>76220</td>
<td>56.3</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Note. LTCHs, long-term care homes.

* Calculations based on the partial year (120 days), January 1, 2010 through April 31, 2010.*
the 625 LTCHs in Ontario, 549 (87.8%) reported at least one gastroenteritis outbreak(s) during the period of January 1, 2007 to April 31, 2010, for a total of 1402 outbreaks. During this period, 76 (12.2%) LTCHs reported no outbreak, 146 (23.4%) LTCHs reported one outbreak, 171 (27.4%) LTCHs reported two outbreaks, and 232 (37.1%) LTCHs reported 3 to 11 outbreaks. Each LTCH reported a median of two outbreaks (mean = 2.1) during the study period. Outbreaks were reported in all 36 PHU jurisdictions.

A seasonal pattern was observed in the number of outbreaks, with 1187 (84.6%) outbreaks occurring from December through April and peaking in January each year (n = 378; 27.0%) (Figure A). The number of outbreaks reported varied between seasons ($\chi^2(3, N = 1187) = 57.1; p < .05$). The number of outbreaks reported May 2008 through April 2009 compared to May 2009 through April 2010 were similar ($\chi^2(1, N = 834) = 2.8; p = 0.10$), and the change in the outbreak definition effective April 28, 2009 did not appear to have an immediate impact on the number of outbreaks reported.

The aetiologic agent was identified in 641 (45.7%) outbreaks (Table 1). There were 610 norovirus outbreaks, and during 11 (1.8%) norovirus outbreaks, a second agent was identified as rotavirus (n = 10; 90.9%) or calicivirus (n = 1; 9.1%). There was evidence of an upward trend in the annual number of norovirus outbreaks proportionate to unknown agent outbreaks ($\chi^2(13, N = 1371) = 32.2; p < .05$). This trend may be partially explained by the phased introduction of real time reverse transcriptase polymerase chain reaction (RT-PCR) for norovirus detection at Public Health Ontario Laboratories (PHOLs) starting in late 2006 (23).

The primary mode of transmission thought to explain the majority of the cases was reported for 661 (47.1%) outbreaks, and included person-to-person (n = 541; 38.6%), and item-to-person (n = 120; 8.6%). The mode of transmission was unknown for 761 (52.9%) outbreaks, and the agent was also unknown for 433 (56.9%) of these outbreaks.
The resident and staff attack rates both ranged from 0% to 100% with the highest attack rates occurring in norovirus outbreaks (Table 2). Resident attack rates varied by aetiologic agent ($\chi^2(3, N = 1343) = 98.9; p < .05$) and year ($\chi^2(3, N = 1343) = 18.5; p < .05$) (Figure B). Two outbreaks had a reported resident attack rate of 0%. Staff attack rates varied by aetiologic agent ($\chi^2(3, N = 1291) = 50.2; p < .05$) but not year. The mode staff attack rate was 0%. There was a mean of 29 resident cases per outbreak (mean = 10,566 cases per year) and 12 staff cases per outbreak (mean = 4,216 cases per year).

The duration ranged from 1 to 52 days (Table 2). The duration varied by primary aetiologic agent ($\chi^2(3, N = 1265) = 120.5; p < .05$) (Figure C). Two outbreaks had a reported duration of 0 days. The mode staff attack rate was 0%. There was a mean of 29 resident cases per outbreak (mean = 10,566 cases per year) and 12 staff cases per outbreak (mean = 4,216 cases per year).

The duration was 10 days for outbreaks with an unknown aetiologic agent, which was shorter than outbreaks where the aetiologic agent was identified ($U_{(N = 1265)} = 128784, Z = -10.8; p < .05$). The outbreak duration was four days or longer (more than the average incubation period for norovirus, rotavirus, and calicivirus infections) for 565 (96.7%) norovirus, rotavirus, and calicivirus outbreaks, and 590 (86.6%) outbreaks with an unknown aetiologic agent. The outbreak duration was three days or less for 110 (8.7%) outbreaks.

LTCHs reported their gastroenteritis outbreak to the PHU a median of 3 days (mean = 3.5; range = 1 - 34) after the symptom onset of the first case. The number of days from the symptom onset of the first case and subsequent cases was not available to determine when the LTCH met the outbreak definition.

DISCUSSION

The incidence of gastroenteritis outbreaks in LTCHs from 2007 through April 2010 was similar to the 937 health care facility outbreaks reported to the MOHLTC from 2000 through 2002 (24). However, the population at risk had increased from approximately 60,000 residents in 558 LTCHs (March 2002) (25) to 76,690 residents in 625 LTCHs (April 2010) (1). The incidence was higher than the mean incidence of 16.8 outbreaks per 100 LTCHs and 0.19 residents cases per 1000 bed-days reported to the Australian government, 2002-2008 (n = 2904 outbreaks) (26). However, the incidence for 2007-2008 were more similar, as the Australian government reported 37.1 outbreaks per 100 LTCHs (n = 1050 outbreaks) (26). The incidence was lower than the 2.4 cases per 1000 patient-days reported in a cohort study of 22 LTCHs (3060 beds) and hospital emergency room visits in Ontario, 2006-2008 (n = 9 outbreaks) (27). Differences may reflect the populations studied, including the susceptibility of residents to illness, and the number of beds in the LTCHs that reported an outbreak.

TABLE 2: Description of attack rates and duration of gastroenteritis outbreaks in long-term care homes by aetiologic agent(s), January 1, 2007 through April 31, 2010, Ontario.

<table>
<thead>
<tr>
<th>Primary Aetiologic Agent</th>
<th>Resident Attack Rate (%)</th>
<th>Staff Attack Rate (%)</th>
<th>Outbreak Duration (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median (IQR)</td>
<td>Mean</td>
</tr>
<tr>
<td>Unknown agent</td>
<td>20.0</td>
<td>12.5 (5.6 - 28.8)</td>
<td>11.9</td>
</tr>
<tr>
<td>Norovirus</td>
<td>29.6</td>
<td>26.3 (11.8 - 43.5)</td>
<td>16.0</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>18.9</td>
<td>15.1 (9.0 - 25.4)</td>
<td>6.6</td>
</tr>
<tr>
<td>Calicivirus</td>
<td>25.8</td>
<td>23.4 (14.7 - 36.9)</td>
<td>3.0</td>
</tr>
<tr>
<td>Total</td>
<td>24.2</td>
<td>17.9 (7.8 - 36.4)</td>
<td>13.5</td>
</tr>
</tbody>
</table>

Note. IQR, interquartile range, 25th to 75th percentile.

“Differences may reflect the populations studied, including the susceptibility of residents to illness, and the number of beds in the LTCHs that reported an outbreak.”
the number of beds in the LTCHs that reported an outbreak.

Norovirus was confirmed in 43.5% of the outbreaks with an agent identified, similar to norovirus in 35% of outbreaks reported by the Australian government, 2002-2008 (26). This similarity may be due to the laboratory diagnostic methods used by Australian laboratories which included electron microscopy (EM), and enzyme-linked immunosorbent assay (ELISA) and RT-PCR were used only where available (28). In contrast, norovirus was confirmed in 163 (70%) LTCH outbreaks investigated by Oregon Public Health Division, 2002-2009 (29), but Oregon State Public Health Laboratories introduced conventional RT-PCR in November 2005 (30) compared to late 2006 in Ontario (23).

The incidence of norovirus, and other viral agents, may have been underreported due to misclassification as an unknown agent in 54.3% of outbreaks. Misclassification may have occurred due to no stool specimen collection, poor stool specimen quality (31), inadequate storage and transport of the stool specimen (31), and/or poor diagnostic test sensitivity (32). To improve viral agent detection, laboratory submission of at least three stool specimens per outbreak collected by the LTCH staff within 48 hours of diarrhea onset is recommended (30).

Identification of the outbreak-related agent and mode of transmission can facilitate customization of the outbreak control measures, and replace the generic outbreak measures, if they differ. For example, quaternary ammonia compounds, detergent, and ethanol (found in many commonly used disinfectants) are not universally effective against non-enveloped viruses such as norovirus and rotavirus (33).

Outbreak-related cases may result from a common or continuing exposure, and secondary cases may result through propagation by various modes of transmission (7, 15). Epidemic curves provide epidemiological clues to the mode(s) of transmission, but were not available in this study. However, 91.3% of outbreaks had a duration of four days or longer, suggesting secondary viral transmission may have occurred or there was a continuous source. The remaining outbreaks of less than four days duration were either rapidly brought under control or were point source outbreaks, and may have been misclassified as non-foodborne or non-waterborne outbreaks in this study.

The PHU designate (e.g., Public Health Inspector or Public Health Nurse) in conjunction with the LTCH staff determined the most likely mode(s) of transmission from the outbreak investigation based on an observational study, an analytical study using evidence from samples (e.g., food, water, environmental), and/or weight of epidemiological evidence (34). The primary mode of transmission was provided for 47.1% of outbreaks, but inference about the type of transmission for individual cases may lead to ecologic misclassification.

“Identification of the outbreak-related agent and mode of transmission can facilitate customization of the outbreak control measures, and replace the generic outbreak measures, if they differ.”
“Understanding the seasonal pattern may be useful to LTCHs and PHUs for strategic timing of outbreak prevention measures, such as education for LTCH residents, staff, and visitors about common outbreak aetiologic agents, reporting illness, exclusion policies, and hand hygiene.”

bias. The mode of transmission may have been reported by the PHU as unknown when the evidence for person-to-person transmission, item-to-person transmission, and self-inoculation was indirect or circumstantial. The mode of transmission and aetiologic agent were missing where PHUs failed to report this information in iPHIS. Provincial surveillance could be improved if PHUs adhere to MOHLTC reporting requirements (18, 35).

The numbers of gastroenteritis outbreaks reported were highest from December through April. This winter-spring outbreak pattern was also noted for viral gastroenteritis outbreaks in all settings (n = 1615) reported to Alberta Provincial Public Health Lab, 2002-2008 (36). The Public Health Laboratory Service Communicable Disease Surveillance Centre, England and Wales, 1992-2000, found that norovirus outbreaks in LTCHs (n = 732) exhibited a distinct winter peak, unlike other outbreak settings (37) and foodborne exposures (38). The Oregon Public Health Department, 2003-2006, also identified a winter-spring outbreak pattern (n = 163) related to norovirus, GII.4 strain (39). In a crossover study of 361 outbreaks of norovirus (38% in LTCHs) in Toronto, Ontario, 2005-2006, an association between local watershed conditions and norovirus outbreak risk suggested a water reservoir and the wintertime outbreak seasonality was due to enhanced viral persistence at low temperatures (40). Understanding the seasonal pattern may be useful to LTCHs and PHUs for strategic timing of outbreak prevention measures, such as education for LTCH residents, staff, and visitors about common outbreak aetiologic agents, reporting illness, exclusion policies, and hand hygiene.

The attack rates in this study were relatively high, and may be a function of the resident or staff susceptibility, infectious nature of the outbreak agent(s), mode(s) of transmission, and outbreak control practices which did not interrupt secondary transmission. A resident attack rate of 0% was rare and may have occurred when an outbreak amongst LTCH staff was declared by the PHU to ensure ill staff were excluded for a specific period of time to interrupt viral transmission and limit environmental contamination (41). A staff attack rate of 0% was common and may have occurred where prevention strategies were successful, and/or where staff had immunity (e.g., rotavirus) or temporary immunity for a few months (e.g., norovirus) to the outbreak agent (7). However, staff cases may have been underreported if staff failed to report their illness to the LTCH or the LTCH did not conduct active surveillance to identify staff cases.

The outbreak duration had a wide range but the median duration was similar to the 16 days (range = 3 to 44) in a review of 72 outbreaks, including 28 nursing homes, 1997-2007 (42), and the 10 days (range = 7 to 14) reported by the Australian government (n = 1136), 2002-2008 (26). The mean duration of norovirus outbreaks was similar to the 15.8 days reported to the Oregon Public Health Division (n = 163), 2003-2006 (39), but less than the 21.6 days reported in the cohort study (n = 37) of Dutch nursing homes, 2005-2007 (43).

As rotavirus is a common cause of severe diarrheal disease in young children globally (7), most of the literature investigates rotavirus outbreaks in pediatric populations. A few documented rotavirus outbreaks reported similar duration of outbreaks, such as the 12 days duration of a 469-bed psychiatric hospital outbreak in the United Kingdom, 1987 (44), and the four-week duration in a 152-bed LTCH outbreak in France, 2007 (45). The similarity in outbreak duration involving norovirus and rotavirus across global regions suggests these two agents may present similar challenges to outbreak control and agent-specific outbreak control strategies may be needed to reduce outbreak duration.

CONCLUSIONS

Gastroenteritis outbreaks were common in Ontario LTCHs from 2007 to 2010 and the incidence of resident cases per 1000 bed-days suggests that gastroenteritis outbreaks were a significant cause of morbidity and burden of illness. Long-term care homes need effective infection prevention and control programs to improve outbreak control and reduce morbidity. The agent and mode of transmission were not identified and/or reported in the majority of outbreaks, and improved identification would facilitate both decision-making about outbreak control measures and surveillance for outbreak-related aetiologic agents. Agent identification may be improved if LTCHs submit at least three quality stool specimens per outbreak collected within 48 hours of diarrhea onset. Mode(s) of transmission reporting may be improved if PHUs adhere to MOHLTC reporting requirements.

ACKNOWLEDGEMENTS

The authors would like to thank the Ontario Ministry of Health and Long-Term Care and Ontario Public Health Units for providing long-term care home data. Dr. Jan Sargeant was supported through a Canadian Institutes of Health Research (CIHR) Institute of Population and Public Health/Public Health Agency of Canada Applied Public Health Research Chair.
Not all cream cleansers are created equal

Clorox® Bleach Cream Cleanser
Powered by a 1.3% sodium hypochlorite solution and scrubbing beads, designed to meet the tough demands of Environmental Services.

For more information, visit www.cloroxprofessional.com/cleanser, e-mail healthcare@clorox.com or call 1-866-789-4973.

© 2013 Clorox Professional Products Company
Not all cream cleansers are created equal.

Clorox® Bleach Cream Cleanser

Powered by a 1.3% sodium hypochlorite solution and scrubbing beads, designed to meet the tough demands of Environmental Services.

For more information, visit www.cloroxprofessional.com/cleanser, e-mail healthcare@clorox.com or call 1-866-789-4973.

© 2013 Clorox Professional Products Company
INTRODUCING

The Female Urinal
A revolutionary new product from Vernacare.

Our patented design features:
• Less invasive alternative to catheterization
• Reduced infection rate
• Enhanced patient safety and dignity
• Designed to promote self-toileting
• Lower environmental impact

For more information & free samples:
1-800-268-2422 • www. vernacare.com
Recently, we have all been hearing a lot about carbapenemase producing organisms (CPO). The media has been picking up on the term and some facilities in Canada have seen recent outbreaks. In BC we have had a lot of interest lately – even though CPO remains a rare occurrence in our healthcare facilities.

CPO are mainly bacteria of the family Enterobacteriaceae. These include Klebsiella species and Escherichia coli (E. coli). We have also seen this resistance popping up in Pseudomonas and Acinetobacter species. These bacteria have acquired genes on transposable plasmids that confer the ability to make carbapenemases – thus making them resistant to the carbapenem class of antibiotics. Some common examples of these genes are the New-Delhi Metallobetalactamase (NDM) and Klebsiella pneumonia carbapenemase (KPC). The NDM genes originated in India and Pakistan while KPC originated in the US. The initial risk factor is healthcare exposures in countries where these bacteria are commonly found. This means individuals who have had surgery, dialysis or been admitted to healthcare facilities in CPO-affected facilities are at increased risk of acquiring the bacteria and developing infections.

The bacteria normally colonize the patient’s intestines. They sometimes cause infections, such as urinary tract infections, bloodstream infections, wound infections, and pneumonia. These infections are difficult to treat because the bacteria have high levels of resistance to antibiotics including third generation cephalosporins and carbapenems.

These bugs can also be hard to track. Because the gene is carried on a transposable plasmid, it is readily shared between bacteria in the same patient’s gut. The patient may have originally been identified as carrying a resistant Klebsiella and subsequently pass a resistant E. coli to the patient in the next bed. Different bug but same gene. This is different from what we would expect to see with spread of MRSA or VRE. This makes identifying an outbreak a challenge. Molecular testing to identify the actual gene may be needed to identify a cluster – because the bug’s susceptibility pattern won’t give you the whole story.

We are certainly seeing an increase in CPO. In BC last year 53 cases were identified compared to 29 in 2012 and 14 in 2011. These cases included both NDM and KPC carrying bacteria. The increase in numbers between 2011 and 2013 were mostly from returning overseas travelers, although transmission within facilities has occurred. We have a fairly high population of immigrants in the Vancouver area that originated from south Asia and regularly visit their country of origin.

How concerned should we be? We have a high level of alert but a moderate level of concern. A combination of active surveillance, aggressive infection control screening protocols and laboratory testing measures are in place to help us identify cases and take appropriate actions. But who should we be screening? It is easy to ask a patient if they have been admitted to a hospital in a foreign country – but how would they know if the patient in the next bed was? CPO remains an emerging organism in Canada. Over the next few years we will continue to learn more about these intriguing bugs. Comprehensive surveillance will be important to ensure that we gain a full understanding of their nature. Stay tuned....

NOTICE

Public Health Agency of Canada

Call for Nominees to the Agency’s Infection Prevention and Control Expert Working Group

Seeking to fill four voluntary Working Group members:
• 1 Occupational Health Registered Nurse or Physician
• 2 Infection Control Practitioners
• 1 expert in Healthcare Epidemiology (research methodology preferred)

Please see the IPAC website for details. Forward your CV and cover letter by May 31, 2014 to Ms. Kathy Dunn, Manager, Infection Prevention and Control section at kathleen.dunn@phac-aspc.gc.ca.
Win the Race to Zero

There’s more to speed and efficacy than staff response

In the race to patient safety, fast-acting Oxivir® sprints past the rest by eliminating a broad range of healthcare-associated pathogens, including Norovirus, MRSA, VRE and many multidrug-resistant organisms in just 60 seconds.

The short contact times and broad efficacy of Oxivir® Tb, powered by AHP® technology, result in improved efficiency and compliance.

Improve your confidence in the Race to Zero with proven technology that offers speed, efficacy and enhanced cleaning, without compromising the safety of staff, visitors or the environment. Let Team Target Zero perform for you.

Zero HAIs, Zero Risk and Zero Inefficiency

OXIVIR® TEAM TARGET ZERO

* AHP and Design® are registered trademarks of Virox Technologies, Inc. used under license
© 2014 Sealed Air Corporation. All rights reserved. 21132ADV (14/071)

www.sealedair.com
Le terme « organisme producteur de carbapénémases » (OPC) s’est immiscé récemment dans les conversations. Les médias l’ont largement diffusé, et quelques établissements hospitaliers du Canada ont déclaré avoir dû faire face à une flambée de la chose. La Colombie-Britannique ne fait pas exception à cette publicité, même si les OPC restent rares dans nos établissements de soins de santé.

Les OPC sont surtout des entérobactéries, appartenant notamment aux espèces Klebsiella et Escherichia coli (E. coli). Nous avons observé une résistance semblable parmi les espèces Pseudomonas et Acinetobacter. Ces bactéries ont acquis des transposons, qui sont portés par des plasmides et leur confèrent la capacité de produire des carbapénémases, ce qui les rend résistantes aux antibiotiques de la catégorie des carbapénèmes. La New-Delhi métallo-bêta-lactamase (NDM) et la carbapénémase Klebsiella pneumoniae (KP) figurent parmi les plus courants de ces gènes. La NDM vient d’Inde et du Pakistan et la KP, des États-Unis. Le facteur de risque tient à l’exposition dans les services de soins de santé dans les pays où ces bactéries sont communes. C’est dire que c’est pour les individus qui ont subi une chirurgie ou une dialyse ou qui ont été admis dans des services touchés par les OPC que le risque est le plus grand de contracter la bactérie et de présenter une infection. Ces bactéries colonisent habituellement les intestins. Elles peuvent infecter les voies urinaires, le courant sanguin ou une blessure, ou encore provoquer une pneumonie. Le traitement est très difficile parce que ces bactéries sont très résistantes aux antibiotiques, y compris aux céphalosporines et les carbapénèmes de troisième génération.

Les OPC sont également difficiles à repérer. Comme le gène est porté par un plasmide transposable, il se propage aisément entre les bactéries qui cohabitent dans les entrailles du patient. Un patient porteur d’une Klebsiella résistante pourra transmettre à son voisin de chambre un E. coli résistant. Deux microbes mais un même gène. Un mode de propagation différent de celui du SARM ou de l’ERV, ce qui complique le dépistage d’une éventuelle flambée. Il faudra éventuellement recourir au dépistage moléculaire pour identifier d’abord le gène, puis l’agrégat, puisque le profil de sensibilité aux antibiotiques ne dit pas tout.

L’incidence des OPC est manifestement en hausse. En Colombie-Britannique, 53 nouveaux cas ont été recensés l’an dernier, contre 29 en 2012 et 14 en 2011, ce qui inclut les bactéries qui portent la NDM et celles qui portent la KP. L’augmentation constatée entre 2011 et 2013 concerne surtout des voyageurs revenus de l’étranger, mais il y a eu aussi transmission à l’intérieur de certains établissements. Vancouver compte de nombreux immigrants venus d’Asie du Sud, qui séjournent souvent dans leur pays d’origine.

Dans quelle mesure faut-il s’inquiéter? Le niveau d’alerte est assez élevé, mais le degré de préoccupation, modéré. Nous avons adopté des programmes de surveillance active, des protocoles de dépistage et de prévention énergiques et des mesures relatives aux essais de laboratoire qui nous aideront à découvrir les cas et à réagir de manière appropriée. Mais auprès de qui faire ce dépistage? Il est facile de demander à un patient s’il a été admis dans un hôpital en pays étranger, mais comment savoir si son voisin de lit l’a été lui aussi? Les OPC émergent tout juste au Canada. Nous allons en apprendre davantage sur ces microbes intrigants d’ici quelques années. La surveillance générale est de mise. Restez aux aguets! 🍀

AVIS

Agence de la santé publique du Canada

Appel de candidatures pour le groupe d’experts sur la prévention et le contrôle des infections de l’Agence

Cherchant à remplir quatre postes bénévoles au sein du groupe d’experts :

- 1 infirmière autorisée en santé du travail ou un médecin du travail
- 2 professionnels de la prévention des infections
- 1 spécialiste en épidémiologie de la santé (méthodologie de recherche préférée)

S’il vous plaît voir le site Web de l’IPAC pour plus de détails. Veuillez faire parvenir votre CV avec une lettre d’introduction au plus tard le 31 mai 2014 aux soins de Mme. Kathy Dunn, gestionnaire, Section de prévention et de contrôle des infections, à kathleen.dunn@phac-aspc.gc.ca
Typically, the motions are:
1. Receipt and approval of the audited financial statements.
2. Approval of auditors for the next fiscal year.
3. Ratification of the acts of the board of directors and officers since the previous AGM.
4. Approval of published candidates for election where there are no additional nominations.

The principal indicates on the form if the proxy will vote yes, no, or abstain during each of the votes.

With the new election process prescribed by Corporations Canada, there are now two additional areas for principal input.

The first is acceptance of any nominations that may come from the floor of the AGM. In this instance, the principal may give the proxy permission to vote in the best interests of the principal by accepting nominations. The form requires the principal to indicate “Yes” to accept nominations, or “No” to decline to accept nominations, or to “Abstain” from voting in the best interests of the principal.

In any election, it is important to have a secret ballot in order to protect the voter from public knowledge of their preference. In the case of an election at the AGM, the principal may give the proxy permission to vote in the best interests of the principal. The form requires the principal to indicate “Yes” for the proxy to vote for their choice in the best interests of the principal, or indicate “No” to decline to vote for any election candidates, or to “Abstain” from voting on behalf of the principal. It should be noted that it is usual for the secretary of the board to receive nominations and proxy forms.

In 2014, the secretary position is up for election and the executive director has been delegated to receive proxy forms in advance of the AGM.
MEIKO’s TopLine healthcare cleaning and disinfection appliances represent a quantum leap in design, using cutting-edge technology that promotes cleanliness, efficiency, and environmental friendliness.

MEIKO’s TopLine offers:
- Integrated disinfection management
- Telescopic rotary nozzle with nine auxiliary nozzles
- Deep-drawn stainless steel wash chamber
- Steam-tight door with interlock
- Air gap potable water protection
- MIKE 2 microprocessor control
- Illuminated display
- Infrared interface for Palm® PDA
- Three programmable wash/disinfection cycles
- External temperature port for temperature verification
- Air stream cooling and drying system
- Optional automatic door opener

Contact your local Stevens representative for details

www.stevens.ca
THINGS CHANGE. FOR GOOD REASON.

IF YOU’RE STILL USING DIRECT OBSERVATION TO CALCULATE HAND HYGIENE COMPLIANCE, THERE’S A BETTER WAY.

Hand hygiene is a key component of reducing infections as part of an overall patient safety and quality program.

The most effective, proven and affordable solution on the market, the DebMed® GMS™ Group Monitoring System can help you lead the change to electronic monitoring at your hospital.

Visit DebMed® at IPAC and OHA

Antiquated Methods. Unreliable Data.

Lead the Change
To reach infection control professionals across Canada through the *Canadian Journal of Infection Control* and its targeted readership, please contact me directly at

Al Whalen, Marketing Manager
1-866-985-9782
awhalen@kelman.ca

Be an author for IPAC Canada

Contact Pat Piaskowski, Clinical Editor, at
pat.piaskowski@oahpp.ca
A smarter way to measure hand hygiene compliance and help reduce the spread of infection.

GOJO® SMARTLINK™ Hand Hygiene Solutions

It starts with the technology of electronic compliance monitoring. And it continues with the clinician-based support, advanced dispensers and superior products you won’t find anywhere else. Together, these components make up GOJO SMARTLINK Hand Hygiene Solutions. These comprehensive solutions can help you improve and sustain your hand hygiene compliance rate. And ultimately help reduce the spread of infection.

Start making a difference today. Email SMARTLINK@gojo.com or visit www.GOJOCanada.ca/SMARTLINK.

Visit GOJO booth 410 at the IPAC-Canada 2014 Conference

Helping hospitals improve patient outcomes.

We had a hand in that.
IPAC CANADA
2014 NATIONAL
EDUCATION
CONFERENCE

May 25-28, 2014
Halifax World Trade
and Convention Centre
Halifax, Nova Scotia
MONDAY, MAY 26, 2014

1. BUGS AND DRUGS: TAKING THE HELM
2:00-2:15 PM

TRACKING THE IMPACT OF VANCOMYCIN-RESISTANT ENTEROCOCCUS (VRE) ISOLATION PRACTICE CHANGE IN ONTARIO
Gary Garber1, 2, Freda Lam1, Chatura Prematunge1, Kwaku Adomako1, Giulio DiDiodato1, Cathy Egans1, Jennifer Robertson2
1Public Health Ontario, Toronto/Ottawa Ontario, Canada; 2Ottawa Hospital Research Institute, Ottawa Ontario, Canada

Background: The role of Vancomycin-resistant enterococcus (VRE) screening and isolation practices (SIP) has become controversial in Infection Prevention and Control (IPAC). There is a relative lack of objective scientific evidence to support the impact of VRE-SIP. This leaves expert opinion to inform the rationale regarding the role of VRE-SIP. As well, the value of VRE-SIP is being questioned due to issues of cost containment. In July 2012, several Ontario academic health centres elected to discontinue (c/c) their VRE-SIP. Public Health Ontario’s (PHO) is following the impact of this practice change on VRE bacteremia rates using publicly reported hospital-acquired infection (HAI) data.

Methods: All Ontario hospitals are required to report VRE bacteremias to the Ontario Ministry of Health and Long Term Care (MOH) Patient Safety and Public Reporting database (PSPR). PHO reviews the HAI quality metrics including VRE. The initial VRE evaluation study questions focused on bacteremia counts, rates, and 30-day all-cause mortality. We compared the bacteremia counts in PSPR reported quarterly pre and post VRE-SIP practice change.

Results: In the 4 quarters (July 2011-June 2012) prior to c/c VRE-SIP, bacteremias at the non-screening hospitals combined for 3.75 bacteremias / quarter (<1/mo). The counts remained unchanged for the next 3 quarters (July 2012-March 2013); but has increased to 9 bacteremias/quarter (3/mo) in the last 3 quarters (April 2013-Dec 2013). Reported bacteremia accounts at hospitals continuing VRE-SIP have not changed over the same period.

Conclusion: Although VRE bacteremia has increased, the rates are still low and the clinical relevance of this increase requires serious review. The plan is to collect data on the clinical factors associated with VRE bacteremia to determine the feasibility of a targeted screening and isolation policy.

2:15-2:30 PM

HOW TO IMPLEMENT AN ANTIMICROBIAL STEWARDSHIP PROGRAM (ASP) (OR ANY OTHER INFECTION PREVENTION AND CONTROL INTERVENTION) AND CONDUCT A PRAGMATIC RANDOMIZED CONTROLLED TRIAL (RCT) AT THE SAME TIME USING A STEPPED WEDGE PROGRAM DESIGN
Giulio DiDiodato1, 2, Leslie McArthur3, Lehana Thabane3
1McMaster University, Hamilton, Ontario, Canada; 2Royal Victoria Regional Health Centre, Barrie, Ontario, Canada

Issue: ASPs reduce antimicrobial utilization, however, their impact on hospital length of stay (LOS) is less clear. Most of this uncertainty is due to poor study design, with most ASP effects analyzed as pre- and post-intervention models. Pragmatic RCT are increasingly being used to evaluate real world programs where individual randomization is not possible or inappropriate. Stepped wedge RCT is a variant of the cluster RCT, individuals within a ‘cluster’ are exposed to an intervention in a random and sequential fashion until all clusters are exposed. The intervention effect is determined by comparing the outcomes in individuals in the exposed versus the unexposed clusters.

Project: A new ASP intervention to reduce LOS for hospitalized patients with a diagnosis of community-acquired pneumonia (CAP) started on April 1, 2013 with the collection of baseline data for a period of 3 months on all 4 medical wards in a large community-based hospital. At the end of the 3-month period, the medical wards were randomized to receive the intervention in a sequential manner, with each new ward receiving the ASP intervention every 2 months until all the wards were included.

Results: To date, all 4 wards are now exposed to the ASP intervention. N=295 CAP patients have been enrolled with n=114 exposed to the ASP intervention. The ASP intervention and control patients are well matched for important covariates.

Lessons learned: Stepped wedge program design can be used to bridge the need for program implementation and robust programmatic evaluation in real world clinical settings.

2:30-3:00 PM – BY INVITATION

PREVALENCE OF MRSA, VRE AND C. DIFFICILE AMONG ADULTS HOSPITALIZED IN CANADIAN HOSPITALS – A FOLLOW-UP SURVEY, 2012
Andrew Simor1, Oscar Larios2, Karl Weiss3, Allison McGeer4, Guanhong Han5, Zahr Hirji6, Victoria Williams7
1Sunnybrook Health Sciences Centre, Toronto; 2Saskatoon Health Region; 3Hospital Maisonneuve-Rosemont, Montreal; 4Mount Sinai Hospital, Toronto; 5Provincial Infection Control Network of British Columbia; 6Scarborough General Hospital, Toronto

The ARO Prevalence Study is a study designed to assess the prevalence of antimicrobial resistant organisms in Canadian hospitals. A point-prevalence survey was conducted in Canadian hospitals in November 2010, under the collaborative efforts of CHICA-Canada (now IPAC Canada) and the ARO Prevalence Study team. Preliminary results were presented at scientific meetings (CHICA-Canada 2011 and 2012; IDSA 2011), and a report submitted to the Canadian Journal of Infection Control in 2012. A follow-up prevalence survey in Canadian hospitals was held in November 2012 in order to monitor changes and trends in prevalence rates that may have occurred. The objectives of this session are to describe the prevalence of MRSA, VRE and C. difficile in 2012 and compare with the results obtained in the 2010 survey; to describe demographic and select clinical/epidemiologic features of patients with prevalent MRSA, VRE, and C. difficile infection in Canadian hospitals; and to describe institutional characteristics, and infection prevention and control policies associated with MRSA, VRE, and C. difficile infection rates.

2. QUALITY AND PROCESS IMPROVEMENT #1 – CHARTING A COURSE
2:00-2:15 PM

POSITIVE deviance approach in the critical care unit equals decreased healthcare-associated infections
Joan Osborne Townsend, Nataly Farshait, Yemi Adebayo, Shirley Goguen
Humber River Hospital, Toronto, ON, Canada

Issue: Over the years, our 14-bed intensive care unit (ICU) frequently experienced increased incidences of Hospital Associated Infections (HAI) which often resulted in restriction of admissions to the unit. Traditional infection prevention and control measures achieved containment, but success was short lived. On reviewing the literature infection prevention and control (IPAC) Team decided to implement the new Positive Deviance (PD) approach in the ICU.

Project: The PD approach was introduced December 2010 to prevent HAs. PD huddles were facilitated by IPAC in collaboration with the unit manager and clinical practice leader. The huddles occurred daily with the interdisciplinary team. The “discovery and action dialogues” technique was used to guide the facilitation process. The staff embraced the fact that their actions impacted the spread of HAs to their patients. They identified several ideas including commit -
The Scarborough Hospital (TSH) began implementing a Lean Management System in February 2012. The focus is on engaging units, departments and leaders in processes and structures to sustain improvement established routines for daily improvement, and to proactively plan and mentor staff. This work is aligned with TSH’s key corporate strategies. IPAC began this journey in June of 2012.

Results:

Improvement strategies are now part of IPAC’s weekly routines. Weekly “Stat Sheets” and “Performance Huddles” began in June of 2013. Monday stat sheets are a problem-solving tool for recognizing challenges or issues, and for proactive planning for the week and beyond. The Performance Huddle is part of our weekly staff meetings and is used to solve issues (improvement opportunities) by using the team’s collective knowledge. We also update our “surveillance board”. This is a visual monthly tracking of all units and hospital-acquired cases over a two-month period. At a glance, it is easy to determine where clusters and/or outbreaks may be occurring. In addition to departmental work, IPAC routinely participates in improvement work external to our department on inpatient units and other departments.

Lessons learned:

IPAC’s integration of quality improvement strategies has helped us to streamline and standardize work, to improve team communication and to proactively solve problem.

Project:

The Scarborough Hospital (TSH) began implementing a Lean Management System in February 2012. The focus is on engaging units, departments and leaders in processes and structures to sustain improvement established routines for daily improvement, and to proactively plan and mentor staff. This work is aligned with TSH’s key corporate strategies. IPAC began this journey in June of 2012.

Results:

Improvement strategies are now part of IPAC’s weekly routines. Weekly “Stat Sheets” and “Performance Huddles” began in June of 2013. Monday stat sheets are a problem-solving tool for recognizing challenges or issues, and for pro-active planning for the week and beyond. The Performance Huddle is part of our weekly staff meetings and is used to solve issues (improvement opportunities) by using the team’s collective knowledge. We also update our “surveillance board”. This is a visual monthly tracking of all units and hospital-acquired cases over a two-month period. At a glance, it is easy to determine where clusters and/or outbreaks may be occurring. In addition to departmental work, IPAC routinely participates in improvement work external to our department on inpatient units and other departments.

Lessons learned:

IPAC’s integration of quality improvement strategies has helped us to streamline and standardize work, to improve team communication and to proactively solve problem.

Project:

The Scarborough Hospital (TSH) began implementing a Lean Management System in February 2012. The focus is on engaging units, departments and leaders in processes and structures to sustain improvement established routines for daily improvement, and to proactively plan and mentor staff. This work is aligned with TSH’s key corporate strategies. IPAC began this journey in June of 2012.

Results:

Improvement strategies are now part of IPAC’s weekly routines. Weekly “Stat Sheets” and “Performance Huddles” began in June of 2013. Monday stat sheets are a problem-solving tool for recognizing challenges or issues, and for pro-active planning for the week and beyond. The Performance Huddle is part of our weekly staff meetings and is used to solve issues (improvement opportunities) by using the team’s collective knowledge. We also update our “surveillance board”. This is a visual monthly tracking of all units and hospital-acquired cases over a two-month period. At a glance, it is easy to determine where clusters and/or outbreaks may be occurring. In addition to departmental work, IPAC routinely participates in improvement work external to our department on inpatient units and other departments.

Lessons learned:

IPAC’s integration of quality improvement strategies has helped us to streamline and standardize work, to improve team communication and to proactively solve problem.

Project:

The Scarborough Hospital (TSH) began implementing a Lean Management System in February 2012. The focus is on engaging units, departments and leaders in processes and structures to sustain improvement established routines for daily improvement, and to proactively plan and mentor staff. This work is aligned with TSH’s key corporate strategies. IPAC began this journey in June of 2012.

Results:

Improvement strategies are now part of IPAC’s weekly routines. Weekly “Stat Sheets” and “Performance Huddles” began in June of 2013. Monday stat sheets are a problem-solving tool for recognizing challenges or issues, and for pro-active planning for the week and beyond. The Performance Huddle is part of our weekly staff meetings and is used to solve issues (improvement opportunities) by using the team’s collective knowledge. We also update our “surveillance board”. This is a visual monthly tracking of all units and hospital-acquired cases over a two-month period. At a glance, it is easy to determine where clusters and/or outbreaks may be occurring. In addition to departmental work, IPAC routinely participates in improvement work external to our department on inpatient units and other departments.

Lessons learned:

IPAC’s integration of quality improvement strategies has helped us to streamline and standardize work, to improve team communication and to proactively solve problem.

Project:

The Scarborough Hospital (TSH) began implementing a Lean Management System in February 2012. The focus is on engaging units, departments and leaders in processes and structures to sustain improvement established routines for daily improvement, and to proactively plan and mentor staff. This work is aligned with TSH’s key corporate strategies. IPAC began this journey in June of 2012.

Results:

Improvement strategies are now part of IPAC’s weekly routines. Weekly “Stat Sheets” and “Performance Huddles” began in June of 2013. Monday stat sheets are a problem-solving tool for recognizing challenges or issues, and for pro-active planning for the week and beyond. The Performance Huddle is part of our weekly staff meetings and is used to solve issues (improvement opportunities) by using the team’s collective knowledge. We also update our “surveillance board”. This is a visual monthly tracking of all units and hospital-acquired cases over a two-month period. At a glance, it is easy to determine where clusters and/or outbreaks may be occurring. In addition to departmental work, IPAC routinely participates in improvement work external to our department on inpatient units and other departments.

Lessons learned:

IPAC’s integration of quality improvement strategies has helped us to streamline and standardize work, to improve team communication and to proactively solve problem.

Project:

The Scarborough Hospital (TSH) began implementing a Lean Management System in February 2012. The focus is on engaging units, departments and leaders in processes and structures to sustain improvement established routines for daily improvement, and to proactively plan and mentor staff. This work is aligned with TSH’s key corporate strategies. IPAC began this journey in June of 2012.

Results:

Improvement strategies are now part of IPAC’s weekly routines. Weekly “Stat Sheets” and “Performance Huddles” began in June of 2013. Monday stat sheets are a problem-solving tool for recognizing challenges or issues, and for pro-active planning for the week and beyond. The Performance Huddle is part of our weekly staff meetings and is used to solve issues (improvement opportunities) by using the team’s collective knowledge. We also update our “surveillance board”. This is a visual monthly tracking of all units and hospital-acquired cases over a two-month period. At a glance, it is easy to determine where clusters and/or outbreaks may be occurring. In addition to departmental work, IPAC routinely participates in improvement work external to our department on inpatient units and other departments.

Lessons learned:

IPAC’s integration of quality improvement strategies has helped us to streamline and standardize work, to improve team communication and to proactively solve problem.

Project:

The Scarborough Hospital (TSH) began implementing a Lean Management System in February 2012. The focus is on engaging units, departments and leaders in processes and structures to sustain improvement established routines for daily improvement, and to proactively plan and mentor staff. This work is aligned with TSH’s key corporate strategies. IPAC began this journey in June of 2012.

Results:

Improvement strategies are now part of IPAC’s weekly routines. Weekly “Stat Sheets” and “Performance Huddles” began in June of 2013. Monday stat sheets are a problem-solving tool for recognizing challenges or issues, and for pro-active planning for the week and beyond. The Performance Huddle is part of our weekly staff meetings and is used to solve issues (improvement opportunities) by using the team’s collective knowledge. We also update our “surveillance board”. This is a visual monthly tracking of all units and hospital-acquired cases over a two-month period. At a glance, it is easy to determine where clusters and/or outbreaks may be occurring. In addition to departmental work, IPAC routinely participates in improvement work external to our department on inpatient units and other departments.

Lessons learned:

IPAC’s integration of quality improvement strategies has helped us to streamline and standardize work, to improve team communication and to proactively solve problem.
Household Infection Control Practices Among Patients with Clostridium Difficile Infection

Vivian Loo1, Paul Brassard2, Mark Miller4

McGill University Health Centre, Montreal, Quebec, Canada, 1Jewish General Hospital, Montreal, Quebec, Canada, 2McGill University, Montreal, Quebec, Canada

Background: Clostridium difficile (CD) is the leading cause of healthcare-associated infectious diarrhea. However, the observation of community-associated cases of CD and the source of their acquisition has remained an unanswered enigma and household infection control practices may influence transmission. The objective of this study was to evaluate the hand hygiene and disinfection practices at home among patients with CD infection (CDI) as well as the extent of household environmental contamination.

Methods: A prospective study was performed from 2011 to 2013 that included 3 hospitals in Montreal (Québec). For all patients with CDI and their household contacts, a standardized questionnaire at enrolment was used regarding hand hygiene practice as well as disinfectants used. Standardized environmental surface samples were cultured for CD.

Results: A total of 52 CDI patients agreed to participate in the study with at least one household contact. The hand hygiene practice was identical for both index and contact participants. 30 (57.7%) used plain soap, 10 (19.2%) used both plain and antimicrobial soaps and 8 (15.4%) used both plain and antimicrobial soaps. Environmental contamination was minimal.

Conclusions: At home, most patients with CDI practised handwashing with plain soap and used a chlorine-based disinfectant. Environmental disinfection practices at home among patients with CD infection (CDI) as well as the extent of household environmental contamination.

Introduction: Indications for hand hygiene (HH) have been defined by the World Health Organization (WHO) and conceptualized into the “Five Moments” model (5MM), which has since been adopted by most countries around the world. Recently, Canadian guidelines have recommended the “4 Moments” model (4MM) adapted from WHO’s 5MM. In contrast with the 5MM, the 4MM requires performing HH before touching the patient’s environment in addition to direct contact with the patient. However, the impact of measuring HH compliance using 4MM vs. 5MM is unknown. The objective of this study was to compare HH opportunities and compliance rates measured according to the 4MM versus 5MM.

Methods: A prospective observational study of patient care activities in a 20-bed tertiary hospital ICU was conducted. A log was generated detailing all activities occurring over 2-hour periods. The activity log was used to identify HH opportunities and determine HH compliance according to 4MM and 5MM.

Results: Over a 1-month period, 203 patients’ zone encounters (PZE) were observed for a total duration of 1372 minutes. The total number of HH opportunities was 574 according to 4MM versus 443 according to 5MM. The average number of HH opportunities per PZE was 2.82 (SD, 1.49) versus 2.18 (SD, 1.42) for 4MM and 5MM, respectively (p<0.001). Of the 215 Canadian “1st Moments”, 117 (54.4%) were not detected by 5MM due to exclusion of “before contact with patient environment”. Global HH compliance according to 4MM was 33.8% versus 41.5% according to 5MM. (p=0.09)

Conclusion: In a tertiary ICU, auditing HH using 4MM criteria was associated with a 25% increase in the number of opportunities compared with 5MM and with an 8% decrease in compliance rates. Discrepancy was due mainly to “before contact with patient environment” not being identified by 5MM. Implications of these discrepancies on clinical practice should be further studied.

4. Clean, Disinfect, Sterilize: Swap the Deck

Two Toronto teaching hospitals sampled sinks in rooms of CPE patients on discharge using independent swabbing strategies.

Results: Facility 1: Bathroom sinks in five patient rooms were swabbed. No CPE were isolated from five. Facility 2: Bathroom sink drains in 2 rooms were swabbed for CPE after double cleaning with accelerated hydrogen peroxide (AHP), no CPE were isolated from the sink bowl, but were found in the drains. After replacing plumbing connecting the sink to the wall, no further CPE were isolated from the drain. Facility 2: Bathroom sink drains in 2 rooms were swabbed for CPE after double cleaning with AHP using a scrub brush. Preliminary swab results for CPE were negative. After two weeks, repeat swabs were positive for CPE, although the CPE positive patients were in the room during this timeframe. Previously uncolonized patients admitted to the affected room were subsequently found to be positive for the identical CPE, with no other exposure identified. After replacing plumbing connecting the sink to the wall, no further CPE were isolated from the drain.

Lessons learned: CPE sink contamination may result from inappropriate use of handwashing sinks for patient care activities, exposure of body fluids in bathroom sinks and/or rinsing body fluid-contaminated receptacles in sinks.

These results highlight: 1) the need to consider contamination of sinks and drains with CPE as a potential source of transmission, 2) the potential importance of biofilm protecting CPE from complete eradication with cleaning/disinfection in drains and 3) the importance of sink design.
Issue: There is a growing recognition of the relationship between the effective disinfection of clinical equipment and Hospital Acquired Infections (HAIs). Recently, in the U.S., an investigative report alleged that an estimated 103,000 disinfection of clinical equipment and Hospital Acquired Infections (HAIs).

Comella Levers, Nataly Farshait, Catherine Morris

Humber River Hospital, Toronto, Ontario, Canada

Drying time to ensure that adequate cleaning and disinfection will occur. The saturation level of the polypropylene wipes was 540% and 520% for reusable cotton, the drying time for fully saturated wipes ranged from 60 to 160 seconds and 50 to 90 seconds respectively. Drying times at the minimum wetting load were 45 to 70 seconds and 50 to 60 seconds respectively.

Results: The "Bag & Tag" process was initiated in February-March 2012. The compliance was monitored using a simple audit tool. Since the implementation of the process, the rate of MRSA colonization decreased by 50%. The compliance with appropriate disinfection and identification of disinfected mobile equipment was increased immediately after the implementation (80%) but ongoing monitoring and feedback is essential for sustainability. It is our intention to continue monitoring this process until it is 100% imbedded into the routine daily practice and sustained.

Lessons learned: Identifying and monitoring mobile equipment disinfection in healthcare facilities presents a challenge due to the ever-increasing numbers of mobile equipment. Healthcare providers must be accountable for the point-of-care disinfection by wiping down equipment before and after use. A simple "Bag & Tag" process provides a framework for monitoring of equipment disinfection by healthcare providers and by Environmental Service Associates. It is easy to follow by healthcare providers and simple to monitor as a part of an ongoing quality improvement cycle.

Project: A process called "Bag & Tag" helped foster a consistent identification of disinfected equipment. Healthcare providers took responsibility for disinfecting mobile patient equipment with using disinfecting wipes after every patient contact. The wipes were strategically placed in patient care areas to be easily accessible by clinicians. Subsequently, the Environmental Service Associate performed daily cleaning and placed a transparent plastic bag over the equipment or tagged to the handle. The bag & tag was removed immediately by clinicians before the intended use on patients and the cycle was repeated. Using the "Bag & Tag" process only clearly identify disinfected equipment touches patients.

Results: The "Bag & Tag" process was initiated in February-March 2012. The compliance was monitored using a simple audit tool. Since the implementation of the process, the rate of MRSA colonization decreased by 50%. The compliance with appropriate disinfection and identification of disinfected mobile equipment was increased immediately after the implementation (80%) but ongoing monitoring and feedback is essential for sustainability. It is our intention to continue monitoring this process until it is 100% imbedded into the routine daily practice and sustained.

Lessons learned: Identifying and monitoring mobile equipment disinfection in healthcare facilities presents a challenge due to the ever-increasing numbers of mobile equipment. Healthcare providers must be accountable for the point-of-care disinfection by wiping down equipment before and after use. A simple "Bag & Tag" process provides a framework for monitoring of equipment disinfection by healthcare providers and by Environmental Service Associates. It is easy to follow by healthcare providers and simple to monitor as a part of an ongoing quality improvement cycle.

Project: A process called "Bag & Tag" helped foster a consistent identification of disinfected equipment. Healthcare providers took responsibility for disinfecting mobile patient equipment with using disinfecting wipes after every patient contact. The wipes were strategically placed in patient care areas to be easily accessible by clinicians. Subsequently, the Environmental Service Associate performed daily cleaning and placed a transparent plastic bag over the equipment or tagged to the handle. The bag & tag was removed immediately by clinicians before the intended use on patients and the cycle was repeated. Using the "Bag & Tag" process only clearly identify disinfected equipment touches patients.

Results: The "Bag & Tag" process was initiated in February-March 2012. The compliance was monitored using a simple audit tool. Since the implementation of the process, the rate of MRSA colonization decreased by 50%. The compliance with appropriate disinfection and identification of disinfected mobile equipment was increased immediately after the implementation (80%) but ongoing monitoring and feedback is essential for sustainability. It is our intention to continue monitoring this process until it is 100% imbedded into the routine daily practice and sustained.

Lessons learned: Identifying and monitoring mobile equipment disinfection in healthcare facilities presents a challenge due to the ever-increasing numbers of mobile equipment. Healthcare providers must be accountable for the point-of-care disinfection by wiping down equipment before and after use. A simple "Bag & Tag" process provides a framework for monitoring of equipment disinfection by healthcare providers and by Environmental Service Associates. It is easy to follow by healthcare providers and simple to monitor as a part of an ongoing quality improvement cycle.

2:45-3:00 PM

IS IT A WASTE? IMPLICATIONS OF VARIOUS WIPE SUBSTRATE MATERIALS ON PROPER DISINFECTION OF SURFACES USING COMMONLY USED DISINFECTANT CHEMISTRIES

Navid OmidiBakhsh, Faraz Ahmadpour, Nicole Kenny
Virox Technologies Inc, Oakville, Ontario, Canada

Objective: Cleaning and disinfection is an integral part of the infection prevention program for healthcare facilities. This study evaluated interactions between the wipe substrate and disinfectant chemistry for saturation load and drying time.

Methods: Three wipe substrates (melt blown Polypropylene, microfiber, and cotton) and five disinfectants (A: 0.5% hydrogen peroxide; B: 0.8% quat/ 20% alcohol; C: 0.08% phenol mix; D: 0.07% quat mixture; E: 0.2% sodium hypochlorite) were used. The minimum and maximum load required to wet the substrate, drying time and volume of liquid released from each wipe were measured.

Results: The saturation level of the polypropylene wipes was 540% and 520% for products A & B. The remaining products did not wet this substrate completely. For Microfiber and reusable cotton, the saturation levels for the disinfectants ranged from 56% and 365% to 65% and 384% respectively. For product A & B, the drying time using fully saturated polypropylene wipes were 115 and 65 seconds and 70 and 45 seconds at the minimum wetting load. For Microfiber and reusable cotton, the drying time for fully saturated wipes ranged from 60 to 160 seconds and 50 to 90 seconds respectively. Drying times at the minimum wetting load were 45 to 70 seconds and 50 to 60 seconds respectively.

Conclusions: In summary, the wipe substrate type has significantly more impact on the saturation level than the chemistry itself and therefore one cannot change the wipe substrate type without first testing it for its saturation level as well as the drying time to ensure that adequate cleaning and disinfection will occur.
ORAL PRESENTATIONS

2:00-2:15 PM

DEVELOPMENT OF A TOOLKIT FOR MANAGEMENT OF URINARY TRACT INFECTIONS IN LONG TERM CARE

Susan Cooper, Anne Augustin, Brenda Smith, Nora Boyd, Rita Cashmore, Esther Chan, Karen Doran, Laura Fraser, Mabel Lim, Christopher Okeahialam, Ellen Otterbein, Francine Paquette, Eva Skiba, Debbie Valickis, Vicky Willet, Amy Wrobel, Liz Van Horne

Public Health Ontario, Ontario, Canada

Purpose: The purpose of this project is to develop resources for LTCH including infection control practices that will significantly reduce the amount of confusion and incorporate principles of behavioral science and organizational change theory.

Result: Priority was given to developing those tools identified as being the most important for current practice. These tools address clinical and fact sheet content for staff, residents and family, as well as laboratory testing procedures and protocols. Guidance from physicians, geriatric and education experts was incorporated. The tools will be available via the Public Health Ontario website.

Lessons learned: Published literature does not always provide consistent direction on this topic. Stakeholder review and consultation prior to and during the development of tools is vital in creating useful, practical, scientifically based tools. Attention to content, language and target audience is an important consideration.

2:15-2:30 PM

THE OTTAWA HOSPITAL (TOH) SPECIAL WEAPONS AND TACTICS (SWAT) TO COMBAT NOSOCOMIAL CLOSTRIDIUM DIFFICILE INFECTION (CDI)

Natalie Bruce, Susan Batista, Michele Larocque-Lévêque, Virginia Roth, Karen Stockton, Kathryn Suh

The Ottawa Hospital, Ottawa, Ontario, Canada

Purpose: The objective of the SWAT team was to initiate a rapid response to any of the infection control related issues, and have heightened awareness of the prevention of CDI. The microbiology laboratory notified IPAC of all new CDI cases. In turn, IPAC would notify the unit Manager and the SWAT team lead of any new nosocomial case. The SWAT team was deployed to the unit within 48 hours of notification. With a standardized checklist, the SWAT Team walked the unit, reviewing the CDI case, and current practices, and identifying opportunities to prevent further transmission. Together, the team established the 3 top priorities to prevent further transmission. An action plan was created on the first visit, with the goal to address all issues within two weeks of the date of the SWAT. Results: 50 SWAT visits were completed between January 25th, and July 23rd, 2013 on 32 units. The priorities identified among all SWAT visits were hand hygiene, timely isolation, and clutter impedes environmental cleaning. These 3 issues made up 66% of all issues identified. Participants in the SWAT were interviewed. They felt the SWATs provided a forum to discuss issues related to CDI, and created a heightened awareness about CDI. CDI rates at TOH have continued to decline since initiating the SWATs.

Lessons learned: SWATs are effective in increasing awareness, and swiftly addressing issues related to CDI at the unit level. The priorities identified in a SWAT provide direction for interventions to prevent further CDI transmission.

2:30-2:45 PM

ARE YOU IN THE “KNOW” ABOUT CONSTRUCTION & RENOVATION WORK WITHIN YOUR FACILITY?

Hajra Haifeez, Faye Baisley, Tony Martino, Janice Ward, Sheila Sarman, James Downey

Toronto East General Hospital, Toronto, Canada

Purpose: In a hospital infrastructure where renovations are a fact of life, healthcare acquired infections are a huge threat to safety for all. Unfortunately, Infection Control Practitioners (ICPs) are often not aware of work occurring within the facility. There are many approaches, but ultimately it is the right combination of personalization, accountability, collaboration and awareness of infection control practices that will significantly reduce the amount of confusion and increase general awareness.

Project: In May 2013, a working group facilitated by the ICP, came together to customize the Infection Control Risk Assessment (ICRA) Matrix to our Hospital’s needs. This new version was then implemented to newly signed Contractors and incorporated in the Contractor’s manual. Out of the working group it was decided that a mandatory educational session with the ICP is a prerequisite to any approval of construction work. In addition, a recommendation list and a permit with the ICP information on it, was then given out.

Results: In January 2014, a satisfaction survey of all hired contractors revealed that our interventions aided in an increased competency and efficient in assessment of projects. It was found that 80% of contacts hired were new to construction within the healthcare setting and valued the guidance by the ICP. The involvement of appropriate multi-disciplinary team created a sense of accountability across the Hospital and reinforced the need to uphold the correct level of hoarding. Subsequently these interventions have led to automatic involvement of the ICP in all construction and renovation projects.

Lessons learned: The involvement of key stakeholders along with the involvement of ICPs and a tool that fits the hospital’s needs was found essential in creating a culture of transparency where everyone is in the “know” of major renovations within the hospital.
INCREASING HEALTHCARE WORKER INFLUENZA VACCINATION RATE BY DEVELOPING & IMPLEMENTING AN INFLUENZA PROTECTION POLICY FOR PATIENT AND HEALTHCARE WORKERS

Helen Shaw, Janet DeAlice, Mark Taylor, Colleen Cook, Meaghan Lawrence-Kreeft
Bluewater Health, Sarnia, Ontario, Canada

Issue: Influenza is a vaccine preventable, serious illness especially in vulnerable groups such as hospitalized patients. Evidence reveals that overall patient mortality decreases when healthcare workers receive influenza vaccine. Therefore influenza vaccination of healthcare workers is an important patient safety initiative. Despite efforts to improve influenza vaccination rates of healthcare workers at our facilities, the best rate achieved was 52%.

Project: Develop and implement a policy inclusive of all healthcare workers at our facilities to improve protection of patients and staff from acquiring influenza. The policy would give healthcare workers the choice to be vaccinated against influenza by December 1 of every year or wear a procedural mask while in any patient care area for the duration of the influenza season. Healthcare worker influenza vaccination rates, number of influenza outbreaks and staff absenteeism rates throughout the influenza season would be compared to another hospital under the same Occupational Health and Safety Director, with similar influenza vaccination programs, with the primary exception being an Influenza Protection Policy for Patients and Healthcare Workers.

Results: 1. As of January 30, 2014 influenza vaccination rates for 2013/2014 compared to 2012/2013 were: Staff increased from 52% to 84%; Professional Staff increased from 40% to 85%; Comparator Staff increased from 58% to 65%; Comparator Professional Staff increased from 38% to 62%. 2. Data comparing number of outbreaks and staff absenteeism will be available by April 30, 2014.

Lessons learned: 1. Implementing a comprehensive policy specifying a clear choice of how a healthcare worker can protect patients, themselves and co-workers from influenza is more effective at achieving a higher healthcare worker vaccination rate than education or incentives. 2. Imperative to have collaborative support from Executive, Human Resources, Occupational Health and Safety, and Infection Control. 3. Implementation requires inclusion of union leadership and a strong communications plan.
INFECTION PREVENTION AND CONTROL IN NUNAVUT:
DEVELOPING A PROGRAM IN THE COMMUNITY HEALTH CENTRES

Roger Pulver, Pat Hackett
Department of Health, Iqaluit, Nunavut, Canada

Nunavut comprises 20% of the land mass of Canada with a population of approximately 39,000. Healthcare services are delivered through health facilities in 25 communities across the territory. Challenges in health care program development and delivery include factors such as the remoteness of the communities, limited transportation options (air year round and sealift in the short shipping season). This is complicated by transient staffing in the professional jobs. Nunavut has not had an IPAC program. Standards for reprocessing/sterilizing, additional precautions, housekeeping and related products and supplies have typically been established based on the past knowledge and experience of staff. In June 2013, the Department of Health invested in the beginnings of an IPAC program. Initial tasks taken on by the ICP was to conduct an environmental scan of the community health centres. The gaps identified included the lack of standardized processes and products, limited IPAC orientation for all health care staff, as well as ongoing education and audits with quality assurance. Another identified gap was the lack of common approach to acquiring supplies and products. Education challenges included support staff where English is often a second language with sometimes limited written skills in Inuktitut.

An IPAC program has now been developed with an advisory committee established. The program includes an IPAC manual, housekeeping procedure manual, a pilot education training program with a quality assurance framework. Subject matter in the presentation would encompass the initial investigation and development of the program and its associated products.

4. EDUCATION: KNOW THE ROPES

2:00-2:15 PM

HOME HEALTH CARE WASTE: NOT AS SCARY AS IT SEEMS

Eva Hatziis, BSc, CPHl(II) CIC1, Kim Allain, BScN, RN, MHS, CIC1, Dianne Jay, MSc, PEng, CHF, Shelley Gray, PEng, CIC, ROHF, Valda Walsh, BSc, TME, EP1, Nicole Warren1
1Nova Scotia Department of Health and Wellness, Halifax, NS, Canada, 2Region 6 Solid Waste Management, Thunder Bay, ON, Canada

Issue: In early 2013, concerns about risks related to infectious disease transmission from home health care waste, particularly from home dialysis waste, prompted the municipal solid waste sector to seek provincial intervention and guidance. Clear-bag waste policies in many jurisdictions allowed the public and waste workers to see what was being disposed of from private homes at the curbside. Perceived risks and gaps in knowledge resulted in work refusals and confusion. Media attention and ministerial briefings prompted action to address the issue.

Project: A multi-disciplinary, multi-agency working group was assembled to support the educational needs of the municipal solid waste sector. The working group created and delivered an educational train the trainer program with a focus on infection prevention and control (IPAC) and occupational health and safety (OHS). The goal of the program was to use evidence-based information to educate and empower waste sector staff to recognize hazards in their work environment, assess infectious disease and OHS risks and to make informed decisions to prevent exposure. This collaboration marked the first time our provincial centre targeted a non-healthcare audience and environment for IPAC education.

Results: Increased ability to distinguish between biomedical waste and general waste in the solid waste sector. Increased understanding of actual versus perceived risks posed in handling home care waste in the solid waste sector. Better understanding of the roles of the respective government departments, facilitating future collaborations.

Lessons learned: Jurisdictional responsibility for the waste sector is not clearly delineated. Local by-laws can create confusion about waste streams and may contradict best practice and evidence. There is a need for ongoing discussion about wastes generated from home health care. Collaboration amongst different government agencies will lead to more effective provincial responses. There is opportunity and need for science-based IPAC education to non-healthcare settings.
Lessons learned:

- The Provincial Infection Control Network of BC (PICNet) educates healthcare workers in infection prevention and control (IPAC). We are limited by staff time and geography as to how many facilities we can provide in-services to, and needed a way of reaching more healthcare workers across BC.
- In 2012, PICNet developed an educational game to make its in-services more interactive, engaging, and fun. The «Let’s Go Viral!» game included buzzer questions; activities such as a Cover Your Cough contest, donning and doffing PPE correctly, and Germ CSI; and teaching moments generated by each question. The game was a hit when it was presented to 9 facilities for Infection Control Week. In order to increase our ‘reach’, in 2013 PICNet packaged up the game and made it available as a kit that facilities could purchase or download. Using a train the trainer model, the kit came with instructions and a demonstration video so that managers/ICPs could run the workshop themselves. The kit was promoted for Infection Control Week.
- Results: The first production run of 50 kits sold out in a month. PICNet visited 13 facilities (300+staff) with the game, and feedback from kit purchasers was extremely positive (data have yet to be gathered on how many total staff were reached).
- Lessons learned: Basing the game on questions that PICNet regularly receives made the workshop extremely relevant to current IPAC issues, concerns, and myths. Making the game interactive worked well for staff interest in, and uptake of, IPAC information.

POSTER PRESENTATIONS

POSTER BOARD #1

A FAMILY OUTBREAK CAUSED BY STREPTOCOCCUS PNEUMONIAE

Zoran Pikula, Linda Davis, Esther Rupnaram, Doreen Alexander, Diane White, Kevin Katz

North York General Hospital, Toronto, Canada

Issue: S. pneumoniae is common in nasopharyngeal flora of healthy persons. In some environments the carriage is up to 90% of individuals. Colonization with S. pneumoniae provides a basis for horizontal spread of the bacteria. Small children, the elderly and immunocompromised persons are at higher risk for this infection which usually presents as pneumonia, otitis, conjunctivitis, meningitis or sepsis. Outbreaks have been described in hospitals, nursing homes, child-care centers, military camps, homeless shelters and jails. Clusters within families have rarely been reported.

Project: We report a family cluster where 4 of 5 household members developed pneumococcal infection and were admitted to our hospital within two days. One member (father) had pneumonia with septic shock and was treated in ICU. Three members (two sons and grandmother) presented with pneumonia and were successfully treated with beta-lactams. The whole family did not have vaccination against S. pneumoniae. There were no known sick contacts, comorbidities nor recent travel.

Results: NP swabs of the four patients were tested by culture, PCR and a-12-Mplex viral panel. PCR was positive for S. pneumoniae in all four patients, culture was positive only for the patient with the invasive infection. Blood culture was positive for the same patient but negative for the remaining three. The 12-Mplex virus panel was negative in all four patients. CXR revealed pneumonia for all four. These variables showed one statistical effect on VRE carriage. There was a relationship between immunocompromised status and a higher than expected colonization. Small outbreaks and colonization with S. pneumoniae provide a basis for horizontal spread of the bacteria. Small children, the elderly and immunocompromised persons are at higher risk for this infection which usually presents as pneumonia, otitis, conjunctivitis, meningitis or sepsis. Outbreaks have been described in hospitals, nursing homes, child-care centers, military camps, homeless shelters and jails. Clusters within families have rarely been reported.

Conclusion: Household transmission of S. pneumoniae may happen within noncomprised persons with a high clinical attack rate. The role of chemoprophyaxis of household contacts and post-exposure pneumococcal vaccination remains unclear.

POSTER BOARD #3

THE NATURAL HISTORY OF VRE COLONIZATION: A RETROSPECTIVE YEAR ANALYSIS

Jenny Scojog, Sharon Carella

Thunder Bay Regional Health Science Centre, Thunder Bay, Ontario, Canada

Objective: To determine the natural history of colonization with Vancomycin Resistant Enterococci (VRE) after an initial positive sample.

Method: Electronic record review of all positive VRE microbiology reports on admitted patients over a 24-month period. Inclusion criteria used included: patients over 18 years old who had at least three subsequent VRE swabs one week apart.

Results: 84 patients met criteria to be included in this 24-month study. 58% (.52-.63 95% CI) had cleared colonization, while 42% (.36-.48 95% CI) remained colonized. 33% met definition for clearance at 6 months or less, six cleared at 12 months or less, 7 cleared at 18 months or less, 3 cleared at 24 months or less. Five categorical variables were analyzed using 2-tailed fisher’s exact test. These variables showed one statistical effect on VRE carriage. There was a relationship between immunocompromised status and a higher then expected clearance (P<.05). A Kaplan-Meier survival curve showed that the likelihood of clearance decreases, the longer colonization persists.

Conclusion: The variables we reviewed had no impact on length of colonization, only patients who were classified as immunosuppressed had a statistically higher rate of clearance. Future research should confirm the relationship between immunosuppressed patients and shorter VRE colonization clearance. This finding could attest to the use of more stringent infection control practices related to patients in a more vulnerable state, or the increased use of antibiotics in this patient population.
POSTER PRESENTATIONS

POSTER BOARD #4

REDUCING TRANSMISSION OF ANTIBIOTIC-RESISTANT ORGANISMS (AROS) THROUGH DAILY ANTISEPTIC PATIENT BATHING

Paola Raggianni1, Sumanma Vinod2, Rouge Valley Health System, Toronto, Canada

A quality improvement intervention was initiated February 2012 to reduce facility-acquired antibiotic-resistant organisms (AROs) targeting MRSA, VRE and ESBL. As part of this effort, the team introduced an antiseptic patient bathing protocol across five medical units which were experiencing higher rates of ARO transmission. This effort was initiated when a root cause analysis documented incorrect compliance with the application of a hand form of Chlorhexidine Gluconate which was being diluted in the patients’ bath water and at times was unable to be tolerated on patients’ skin. A non-rinse topical 2% Chlorhexidine Gluconate (CHG) antiseptic skin cleanser applied through pre-saturated cloths was introduced for daily patient bathing. Prior to initiating this quality improvement effort on a given medical unit, staff received education and training on the new bathing protocol with at least 80% of staff trained as one control measure. The aim of this initiative was to reduce ARO transmission by 40% over an 18-month period across five medical units. A non-rinse application was substituted for the existing antiseptic to ensure consistency in the bathing protocol thus enabling a reduction of ARO transmission. Baseline data indicates an average of 136 ARO transmissions across the five medical units over the 18-month period preceding this quality improvement effort. In the 18-month period post project implementation there were 65 ARO transmissions across the five medical units representing a reduction of 52%.

POSTER BOARD #6

BEST PRACTICES IN COLLECTING URINE SPECIMEN: A SURVEY OF NURSES’ PERCEIVED IMPORTANCE

Juliana Barry1, Angela Gunn (BN Student)2, Gail Barwise3, Debbie Steele4, University of PEI, Charlottetown, Canada, 5Queen Elizabeth Hospital, Charlottetown, Canada

Objective: To determine the best practice in collecting urine specimen cultures. A survey using a likert-type scale was developed and passed to nursing staff on two inpatient units to obtain feedback on the use of best practices.

Results: Of the 200 surveys distributed, 40% of the surveys were returned to the Infection Control team for analysis. Results indicated that nursing staff perceive adhering to aseptic technique and routine practices are important. However, further guidance was required for collecting midstream urine specimens.

Lessons learned: The initial flow of urine before collecting a midstream urine specimen is important in order to wash away bacteria in the urethra. Routine cleansing of the urethra is not recommended for midstream urine collection but is recommended if the client has poor hygiene or if fecal contamination is known. It is important that nursing staff are aware of best practice guidelines and education initiatives should be developed to assist nursing staff with these changes.

POSTER BOARD #8

VALUE OF AN ACTIVE SURVEILLANCE POLICY TO DOCUMENT CLEARANCE OF MECillin-RESISTANT STAPHYLOCOCCUS AUREUS AND VANCOMYCIN-RESISTANT ENTEROCOCCUS AMONGST IN-PATIENTS WITH PROLONGED ADMISSIONS

Ananda Ghosh1, Cindy O’Neill2, Lei Jais1, Fatimah Al-Mutawa3, Dominik Mertz4, 1Hamilton Health Sciences, Hamilton, ON, Canada, 2Department of Medicine, McMaster University, Hamilton, ON, Canada, 3Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada

Objective: In-patients with methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) are kept in Contact Precautions (CP) as part of infection prevention and control measures. Discontinued CP once patients have cleared MRSA or VRE carriage can improve patient care and reduce costs. However, data to guide optimal means of screening for clearance is lacking. We evaluated the impact of an active surveillance policy to identify clearance of MRSA or VRE in known carriers with prolonged admissions.

Methods: We reviewed all consecutive in-patients with MRSA or VRE and a length of stay of 30 or more days at three acute care hospitals in Hamilton, Ontario over one year. Until clearance (defined as three negative consecutive swabs at least one week apart) or discharge, our policy requests that carriers are weekly screened for clearance for the first two months, then monthly for 3 months and thereafter every 6 months.

Results: A total of 363 admissions were included, 132 (36.2%) patients carrying MRSA, 176 (33.7%) carrying VRE, and 37 (10.1%) carrying both. We found 11.2% of MRSA carriers cleared during their hospital stay after a median of 23 days (IQR 14-39 days), and 18.0% of VRE carriers cleared after a median of 26.5 days (IQR 13-45.5 days). We estimated 2,151 patient-days in CP saved compared to the alternative of continuing CP indefinitely for carriers. Cost calculations estimated overall savings of $289,312.00 over the study period.

Conclusions: Active surveillance of known MRSA and VRE carriers to detect clearance during prolonged hospital stay reduces isolated days and costs.
monthly prevalence screening was 1.6/1000 patient days, at completion with monthly prevalence screening was 1.3/1000 patient days. Overall MRSA isolation burden on pilot units at initiation of the project was 40%, at completion 17.3%. Lessons learned: Multifaceted MRSA reduction strategies were helpful adjuncts in decreasing isolation burden and nosocomial MRSA transmission. Sustained decolonization was less successful. As a result, this protocol is being incorporated throughout all inpatient areas of Parkwood.

POSTER BOARD #14
PUBLIC HEALTH’S CHALLENGE: USING PUBLICLY REPORTED INFECTION RATES FOR A VANCOMYCIN-RESISTANT ENTEROCOCCI (VRE) EVALUATION PROJECT IN ONTARIO
Gary Garber1 2, Kwaku Adomako1, Chatura Prematunge1, Freda Lam1, Giulio DiDiodato3 4, Jennifer Robertson1, Cathy Egan1 2 3 4 5
1Public Health Ontario, Toronto, ON, Canada; 2Ontario Health Research Institute, Ottawa, ON, Canada; 3Royal Victoria Regional Health Centre, Barrie, ON, Canada

Background: Limited scientific evidence surrounding the effectiveness of screening and isolation practices (SIP) for patients colonized with Vancomycin-resistant Enterococci (VRE) has led to much debate among infection control professionals. To better inform VRE policy/guidelines, Public Health Ontario (PHO) initiated a project examining the impact of VRE SIP changes on VRE bacteremia (VRE-B) trends. A key objective was to validate VRE-B data submitted to the Patient Safety Public Reporting program (PSPR), the only data source for hospital-acquired infections (HAI) and adverse events in Ontario.

Methods: Hospital infection control staff submitted VRE-B information to PSPR on a quarterly basis. Using PSPR data, PHO identified all Ontario hospitals reporting ≥1 VRE-B(s) between 2009 and 2013, and then requested monthly VRE-B data from each identified site. Through this process PSPR VRE-B data was actively validated with reporting hospitals.

Results: From 2009-2013, 69/235 Ontario hospital sites reported ≥1 VRE-B(s). To date, 52 hospital sites (75%) with ≥1 VRE-B(s) participated in the data validation process, and 17 (15%) sites identified incorrectly reported cases. Of the 361 VRE-B(s) reported, 45 (12%) were incorrectly reported (median number of errors: 1, range: 1-27). False negative VRE-B reporting has yet to be validated, thus PSRP sensitivity and specificity is currently unknown.

Conclusions: Ontario’s PSPR program provides valuable information to support evidence-based health care infection control improvements. However, this work highlights the importance of incorporating quality control processes when using PSRP data. Additional information on VRE-B case severity and mortality, in addition to PSPR data, are needed to determine VRE SIP effectiveness and inform guidelines.

A RECIPE FOR SUCCESS: THE IMPACT OF A STANDARD OPERATING PROCEDURE AND ONGOING AUDITS ON NEONATE FEED PREPARATION
Melanie Eng-Chong, Sandra Callery, Maren Garch, Mary Vanecombine
Sunnybrook Health Sciences Centre, Toronto, Canada

Issue: The use of human expressed breast milk (EBM) for premature and high risk infants conveys benefits in this vulnerable population in whom infections can be fatal. Customized feeds combine EBM or donor milk (DM) with powder formula (PF), human milk fortifier (HMF), and microlipids. Improper preparation techniques and the order of introduction of EBM and additives into the laminar flow hood (LFH) can pose a risk for cross contamination, compromising product quality and safety. Preparing feeds using combinations of EBM or DM and additives from multi-dose containers requires specialized training, standard operating procedure (SOP), and knowledge of aseptic technique, operation of a LFH and environmental hygiene. Sunnybrook Health Sciences Centre’s level three NICU has seven feeds preparation staff comprised of pharmacists, dieticians, and technicains. External training is not available due to the uniqueness of feed preparation.

Project: Interdisciplinary collaboration between Infection Prevention & Control, dietician and feed preparation technicians designed the training model, developed a SOP and an audit tool (AT) based on the SOP. Didactic and practical training incorporated: food preparation and safety; aseptic techniques applied in the LFH; spill and materials management during preparation; and operating, cleaning and disinfection of LFH. Calculation sheets ensure correct amounts of EBM, additives, and supplies which are identified prior to feed preparation. Audits are conducted regularly; immediate feedback is provided to staff and management. Re-certification consists of a written test and practicum every 3 months.

Results: Practice changes have been successfully implemented and sustained. Lessons learned: Complex feed preparation requires specialized on-the-job training to ensure product quality and safety. SOP and AT are objective tools that are reliable, improvable and reproducible ensuring practices are consistent and measurable. SOP is useful to determine skills and competencies for hiring, training, certification and performance appraisals.

POSTER BOARD #16
THE AUDITOR GENERAL SAYS ACTION REQUIRED!
Tammy MacDonald
Capital Health, Halifax, Nova Scotia, Canada

Issue: The Auditor General’s audit of Infection Prevention and Control highlighted some important recommendations to enhance patient safety with respect to endoscopy reprocessing at Capital Health.

Project: A Flexible Endoscope Reprocessing Quality Improvement multidisciplinary team was established across 9 departments to respond to these recommendations. The goal of the initiative was to reduce the risk to patients of exposure to improperly reprocessed scopes with 100% compliance with the new processes involved in the documentation and verification of completed scope reprocessing. A GAP Analysis was completed by benchmarking our scope reprocessing program with Best Practice Guidelines for Reprocessing Flexible Endoscopes. Various process improvement mechanisms were used throughout the improvement process including The PSDA as well as Auditing with Feedback and Goal- directed Check Lists. Old processes were amended to mistake-proof our system with an established approach that included a unit-based strategy was employed. The approach concentrated on teams, at the unit level, and strategies were implemented to improve point of care communication to create a culture of patient safety.

Results: This project highlighted that success in patient safety cultural improvement can be achieved in a short time frame, with intensive unit level strategies, aimed at targeting point of care communication. Patient safety cultural improvements drive improvements in patient safety as evidenced by improved hand hygiene compliance rates (2011-64%, 2012-83.14%, 2013 (Jan-May)-89.72%) and decreased adverse outcomes like CDI rates (2011-0.31/1000 patient days, 2012-0.23/1000 patient days, 2013(Jan-May)-0.20/1000 patient days).

POSTER BOARD #23
ANTIMICROBIAL COPPER: A SCOPING REVIEW
Karim Keshavjee1 2, Tom Portman1
1Aerius Technologies, Burlington, ON, Canada; 2University of Victoria, Victoria, BC, Canada

Background: Metallic Copper has potent antimicrobial properties and is approved by the US Environmental Protection Agency for the claim: “kills 99.9% of bacteria within 2 hours”. Knowledge of copper’s antimicrobial properties is increasing rapidly. We conducted a scoping review to identify the range of topics being researched.

Methods: A search of Medline, Google Scholar and experts in the field
identified 127 articles published, most in the last 10 years.

Results:
- Efficacy of copper in a variety of settings (ICU, medical wards, etc.);
- Mechanism of antimicrobial activity;
- Issues with use in hospital settings (cost, difficulty in manufacturing, tarnishing, etc.);
- Available forms of copper and their various applications (e.g., solid, infused, sprayed);
- Cost-benefit studies;
- Antimicrobial resistance and other factors which may reduce antimicrobial efficacy;
- Infection audit practices (will we still need to clean?);
- Role in managing superbugs and difficult pathogens;
- Role in preventing medical device infections;
- Environmental and economic benefits and challenges of increased copper use.

Conclusion:
Copper is a promising new antimicrobial with an excellent safety profile. As with any new application, potential drawbacks have to be identified and addressed to ensure patients get access to the best infection prevention tools.

POSTER BOARD #24

GOT A UTI? THIS MIGHT BE WHY!

Betty Anne Ellord, Paula Stagg

Western Health, Corner Brook, NL, Canada

Issue: Urinary tract infection (UTI) ranks with pneumonia as the second most common type of healthcare-associated infection, second only to surgical site infections (SSIs). An analysis of our infection control data indicated that 65-75% of the hospital-associated infections were related to catheter-associated urinary tract infections (CAUTIs). This prompted an infection prevention and control improvement project.

Project: In collaboration with the care team a "CAUTI bundle approach" was implemented on a medical unit. The bundle included: i) education on best practices, ii) quick reference pocket cards, iii) posting of best practice flyers, iv) physician engagement, v) collection of catheter days from April 01, to June 30, 2011.

Results: As a result of this project, we developed standard definitions for CAUTI; new guidelines for catheter indication; improved documentation based on best practices for CAUTI prevention; and a revised policy related to CAUTI. Nursing staff are empowered to remind physicians of appropriate reasons for catheter use and are knowledgeable about alternate choices for patients. They have improved skills related to catheter maintenance and early removal. These improvements have resulted in a significant reduction of CAUTI.

Lessons learned:
- Implementing best practices for the prevention of CAUTI worked effectively in my facility. Significant ICP time was necessary during this project to provide education to staff on the best practices, to answer questions, and to provide encouragement for compliance with the recommendations. Being creative with reminders and empowering nursing staff to be involved is vital for a successful sustained change in practice. Our CAUTI bundle approach is now integrated into the documentation system with reminders to staff to ensure the patient still requires the catheter. Electronic documentation has significantly improved timeliness and accuracy of data collection, evaluation, dissemination of information, and implementation to other units and facilities.

POSTER BOARD #26

EFFECTS OF DISINFECTANT WIPEs ON SENSITIVE HEALTHCARE SURFACES

Dranna Del Re, Chris Beno, Kevin Smidt, Dean Swift

'Biolennia Laboratories, Toronto, ON, Canada, 'Micrylium Laboratories, Toronto, ON, Canada, 'BDI, Steenville, ON, Canada

Background: Studies have shown that shared surfaces and devices can serve as a route for transmission of pathogens; however, proper disinfection protocols are lacking to address sensitive surfaces and equipment that can be permanently damaged by disinfectants used in healthcare environments. We tested commercial disinfectant wipes on various surfaces to examine antimicrobial efficacy and any damaging effects.

Methods: Samples were taken before and after use of a disinfectant wipe from touch screens, keyboards, computer mice and waiting area chairs at 4 Long Term Care (LTC) facilities across the Greater Toronto Area. Pieces of mattress coverlet material and touch screens were wiped approximately every hour for two months with various disinfectant wipes and examined for any damage.

Results: All samples from LTC facilities showed marked contamination with bacteria and fungi prior to disinfection. After wiping with Product T, samples were cleared of contamination. Touch screens and mattress coverlets showed no damage after repeated wiping with Products S and T. Discoloration and damage were observed with Products C, V, and P. Some surfaces showed contamination with S. aureus and E. coli. Variable results were observed for antimicrobial effectiveness; some wipes showed complete removal of organisms while others showed some to no reduction.

Conclusion:
This study further illustrates that shared surfaces and devices can be contaminated with microorganisms, stressing the importance of disinfection of these surfaces. Sensitive surfaces present a challenge to disinfection; however, we have demonstrated that products are available to effectively disinfect sensitive surfaces without causing harmful and costly damage.

POSTER BOARD #28

BUGS, DRUGS AND URINARY TRACT INFECTIONS: THE BATTLE CONTINUES IN LONG-TERM CARE

Alisa Cuff, Lola Gushue

Central Health, Gander, NL, Canada

Issue: Urinary Tract Infections (UTIs) are the most common diagnosed infection in the Long Term Care (LTC) population. It was identified through routine surveillance that inappropriate utilization, specimen collection and misdiagnosis of UTIs in LTC are a concern. Infection Prevention and Control in collaboration with the antibiotic stewardship committee initiated a retrospective review of the UTI cases to determine the extent of the problem.

Project: Data was collected from April 01 to June 30, 2013 on the following issues: Clinical findings, investigations and treatments.

Results:
- Clinical findings: Inconsistent clinical documentation (symptoms of infection);
- Deficiency in the electronic reporting (microbiology lab); 54.5% had no documentation indicating why a urine sample was collected or why treatment was ordered; Increased antibiotic utilization for the treatment of UTIs. Investigations:
- Inappropriate urine collection methods;
- Cost analysis of first line vs. second line antibiotics from a sample size of 23/88 females resident showed a cost savings of $1,085.12 (extrapolated over one year); A urine culture is only performed if initial microscopic sampling meets criteria. Treatments: Inadequate utilization of published guidelines for appropriate diagnosing and treatment of UTIs: 6.8% received treatment with an antibiotic that was ineffective against the bacteria and treatment was not changed; 15.9% of reports showed no growth or no urines were sent but yet the residents received treatment.

Lessons learned: Lack of knowledge, education and adherence to best practices and documentation lead to inappropriate diagnosing and treatment of UTIs. Inconsistent electronic reporting leads to misinterpretation of lab results. Continued surveillance and reporting being ongoing. A short review can lead to identification of significant problems. Collaboration between IPAC and ASC lead to enhanced resident care.

POSTER BOARD #30

USING DAILY CHLORHEXIDINE BATHING OF ALL PATIENTS ON A MEDICINE UNIT TO REDUCE INCIDENCE AND COSTS RELATED TO HOSPITAL ACQUIRED MRSA

Helen Shaw, Danielle Huston, Sandy Maxfield

Bluewater Health, Sarnia, Ontario, Canada

Background: In Q4 of 2012/13 fiscal year, surveillance indicated that MRSA transmission on the Medicine Unit was increasing from a rate of 0.25 MRSA transmissions per 1,000 patient days in Q3 to as high as 2.3 in Q4 of 2012/13 and Q1 of 2013/14, despite daily CHG bathing for all MRSA positive patients. Estimated costs of the 17 MRSA transmissions from January through May 2013 are $150,297.00.

Purpose: Create a sustainable solution to improve patient safety by reducing incidence of Hospital Acquired (HA) MRSA on the Medicine Unit.

Method: In mid-Q4 of 2012/13, an interdisciplinary team was formed to investigate and reduce HA MRSA transmission on the Medicine Unit. The team included members from environmental services, management, frontline staff and Infection Prevention and Control (IPAC). A review of current practices regarding; environmental cleaning, appropriate use of personal protective equipment (PPE), screening for MRSA, appropriate accommodation of patients, and patient bathing was undertaken. Subsequently, it was decided to begin bathing all patients using a CHG bath on a daily basis, monitor data and patient reaction for 6 months, at which time the team would decide whether to make this routine bathing practice.

Results:
- Within 1 month of requiring a daily CHG bath to all patients on the Medicine Unit, a decline in HA MRSA transmission was evident. 2. After 5 months of providing daily CHG baths to all patients on the Medicine Unit, the rate of HA MRSA transmission was reduced to 0.78. 3. An overall cost avoidance of $159,773.00 was achieved.

Conclusions:
Providing daily CHG baths to all patients on a hospital unit with a heavy bioburden of MRSA reduces HA MRSA transmission. An interdisciplinary approach is essential to effectively make changes in practice. Staff is open to practice change if involved and are provided the evidence for doing so.
An Outbreak Tabletop Exercise for Long-Term Care and Retirement Homes

Susan Cooper1, David Ryder2, Michelle Delonge1, Andrew Dunn1
1Public Health Ontario, Ontario, Canada

Issue: The 2012-2013 influenza season saw an increase in the number of respiratory outbreaks at long-term care facilities (LTC) and retirement homes throughout eastern Ontario. Feedback to the public health unit (PHU) indicated that not all facilities fully understood or felt comfortable with the steps necessary in managing an outbreak in their facility.

Project: PHU approached the regional infection control network (RICN) about partnering on a tabletop exercise. The exercise would simulate a respiratory outbreak in a healthcare facility. Health unit staff would develop a scenario and expected outcomes. The RICN would refine the process and facilitate the actual exercise. Attendees of the session would work, step by step, through six phases of the outbreak in groups, taking the opportunity to discuss actions among themselves. Each phase was followed by a facilitated discussion period indicating anticipated actions and review of resources available to assist the facility.

Results: Participants used available resources to identify the steps necessary for successful management of the outbreak. With some guidance they were able to work through the six phases: identify they had an outbreak, assemble an outbreak management team, develop a case definition, interpret lab results, and non-clinical staff are engaged in the process and provide patients with a clear, non-punitive mechanism for feedback. Phase 2, set to start in April 2014, is focused on accomplishing these goals.

Lessons learned: Not all facilities were making resources available to all staff all the time. Open communication was identified as a vital component of managing an outbreak. The networking and discussion that occurred were as important as the actual exercise in developing confidence in managing future outbreaks.
2013 the organization introduced a new screening tool to provide quality patient care. The rise in 2013, this was an opportunity for the organization to revise their acute infection control processes. Recognizing through screening at triage breaks the chain of transmission also makes it challenging for healthcare providers to follow best hand hygiene practices.

Project: In 2008, the Ministry of Health and Long Term Care (MOHLTC) multifaceted approach to improving hand hygiene was rolled out across the organization. Over the subsequent years, the overall hospital rates improved from 85 to 90%, while the ED department trailed behind. A series of meetings with the departmental leaders, staff, physicians and Infection Prevention and Control (IPAC) professionals identified ED driven opportunities and strategies for improvement. These included; clear definition of patient environment, unit champions, daily huddles, daily ED rounds by IPAC team, and alcohol-based hand sanitizer to hallways and mobile equipment.

Results: The collaboration of the ED and IPAC program resulted in improved adherence rates of hand hygiene in the emergency department. Between 2011 and 2013 hand hygiene adherence rate in ED increased from 67% to 91%.

Lesson learned: Tailoring the four moments of hand hygiene education to unique needs of the ED and training ED staff in collaboration with unit based champions contributed to improved adherence rates in the ED.

POSTER BOARD #39
INFECTION CONTROL PRACTICES: IMPROVEMENTS AND INNOVATION CHANGES IN THE HEMODIALYSIS UNIT AT WILLIAM OLDER HEALTH SYSTEM
Raina Pantelides, Adenike Rowaye, Christine Robinson, Rachael Sawicki, Kimberly Presta, Catharine Baker, Janine Domingos, Ellie Clarke, Maria Hollands

Issue: The Infection Prevention and Control CHICA audit tools for Hemodialysis were used to review processes and practices. The audit revealed that some infection control practices were not implemented appropriately such as: identification and communication of new dialysis patients and travelers, hepatitis B segregation/buffering, testing schedules for Hepatitis B/C, tracking/cleaning of the dialysis machines and not sharing single use items between patients.

Project: An ICP was seconded to the Hemodialysis program to improve the various issues identified in the audit. The first step was to create a algorithm identifying new patients/return travelers using communication tools. All patient assignments are authorized by the resource nurse and ICP to ensure geographical segregation and buffering. Recommended testing schedules for Hepatitis B/C were incorporated into an order set, ensuring the serology would be done automatically as part of the units established schedule. These results are recorded in a newly developed spreadsheet to maintain testing compliance. The reprocessing of clamps within the unit was discontinued. Tapes and clamps are dedicated for each patient.

Results: The communication process of identifying new patients/return travelers, compliance with hepatitis B protocol and tracking of the results has improved. The dedicated use of clamps and tapes is better. The tracking/cleaning methods of the machines are undergoing approval.

Lesson learned: Having a dedicated ICP for a large outpatient Hemodialysis program is important to maintain consistent monitoring and improvement. Increasing the auditing frequency will assist in ensuring that processes are being followed to protect this high risk dialysis population.

POSTER BOARD #41
BREAK THE CHAIN OF TRANSMISSION BEFORE IT BREAKS YOU!
Lindsay Dracz, Mannish Patel

Nineteen Health System, Brampton, ON, Canada

Recognizing through screening at triage breaks the chain of transmission also helps with accommodating a patient properly. With MERS-CoV and H7N9 on the rise in 2013, this was an opportunity for the organization to revise their acute respiratory illness (ARI) screening questionnaire to enhance patient safety. In 2013 the organization introduced a new screening tool to provide appropriate patient care, and improve our current process for ARI, gastrointestinal illness (GI), and antibiotic resistant organisms (ARO) screening. Asking the recent travel questions and quick access to the online travel health notices link, identifying countries of concern was valuable for HCP. The improvement to the previous “febrile respiratory illness” screening tool and new prompts identifying the type of additional precautions for the triage staff improves both HCP and patient safety. The inclusion of the GI questions on the screening tool allows the health care providers (HCP) to capture unusual vomiting or loose stool. The key messaging of “unusual” leads the HCP to review the BSC with the patient allowing the health care provider to make an informed risk assessment and promptly initiate additional precautions. The addition of the ARO questions in the tool leads the HCP in their decision making to collect samples on the high-risk patients. The new screening tool empowers the HCP to evaluate and determine the need for additional precautions. The tool was introduced in paper form in all of the Emergency Departments and has evolved into an electronic form that links to an electronic visual aid for the identification of patients in additional precautions at a glance. The utilization of this tool has exposed missed opportunities and areas for improvement. Through education and real time feedback IPAC continues to work with staff to improve assessments. A process to evaluate the tool for effectiveness and compliance has been created.
flow: the daily number of patients on isolation precautions, rate of hospital acquired AROs, and number of transfers within the hospitals related to cohorting of patients on Isolation Precautions.

Results: As a result of this project, the amount of transfers related to cohorting patients on isolation precautions decreased by 70% (from 12 per day to the maximum of 4 per day) at all sites. The Hospital Acquired MRSA colonization rates at all sites indicated a significant decrease from 1.15 per 1000 patient days to 0.40 per 1000 patient days at one of the sites and 2.04 to 0.30 per 1000 patient days at another site. There were also, a significant number of patients on additional isolation precautions which decreased by 20% (40-60 patients per site to 30-50 patients per site).

Lessons learned: Overcoming barriers such achieving buy-in from the senior management, physicians and staff was one of the biggest milestones of the program as IPAC were encouraged to get involved in all aspects of the hospital flow while providing comprehensive 24/7 coverage. The plan to improve patient flow should be based on the enhanced communication between multidisciplinary team and IPAC which improved patient flow, reduced isolation delays and ultimately increased patient’s safety and effectiveness within the organization.
major interruptions in the care processes, let alone the Infection Control risks associated to such activities.

Project: Funding was approved for the creation of nine solid walls. The driving inspiration was not to think about daily bricks, but to come together putting aside personal agendas and thinking outside of the traditional boundaries for an improved process. The fundamental process was as follows: 1. Infection Prevention & Control, and Engineering Services undertook breaking down the project into manageable components. 2. The expectation was for the stakeholders to: collaborate, problem solve together, and share the workload. 3. We expected all players in this project to demonstrate leadership, from their respective professional obligations. 4. The patient was front and centre for all decisions made, when delayed, we would refocus on the patient. 5. We were responsible stewards of the public purse.

Results: Construction took a total of nine days instead of a traditional four-week period, no infections identified, no disruption to any patient services, full cooperation from all staff, and a leadership team fully committed. Categorically our results were positive across the continuum.

Lessons learned: Capital Health has subsequently changed its processes around construction/renovation by, looking at our work thru a different lens, embracing cooperation from all staff, and a leadership team fully committed. Categorically Results: Construction took a total of nine days instead of a traditional four-week period, no infections identified, no disruption to any patient services, full cooperation from all staff, and a leadership team fully committed. Categorically our results were positive across the continuum.

POSTER BOARD #58

COMPARISON OF TERMINAL CLEANING OF A MEDICAL SURFACE REPAIR PATCH ON HOSPITAL MATTRESSES

Holly Wong1,2, Jill de Grood1,2, Robyn Louie2,3, Linda Ward1,3, Thomas Louie1,5

1University of Calgary, Faculty of Medicine, Calgary, AB, Canada, 2W21C Research & Innovation Centre, Calgary, AB, Canada, 3Alberta Health Services, Infection Prevention & Control, Calgary, AB, Canada

Background: As a preventive strategy, a patch is available to repair a damaged mattress surface to an intact state. This study was undertaken to evaluate whether the patch was as cleanable as the adjacent intact mattress surface.

Methods: A total of 120 patches were applied to the top and side of 60 Hill-Rom Versacare® mattresses in October 2012. The surface and edge of the patch, and the adjacent mattress surface were swabbed before and after terminal cleaning, with each clean resulting in 12 samples, for a total of 720 samples over 60terminal cleans. Each swab was placed in 1 ml TS9, vortexed and 0.1 ml was planted onto whole plate media for semi-quantitative enumeration of normal skin flora, coagulase-negative staphylococci, methicillin-sensitive S. aureus (MSSA), MRSA, Enterococcus spp., VRE, Gram negative bacilli and C. difficile. The quantification of microbes ranged (score in parentheses) from no growth in broth or agar media (0); broth only (1); trace-10-15 cfu (2); 16-50 cfu (3); 51-250 cfu (4); 251-1000 cfu (5); >1000 (6). An arbitrary score of > 4 was deemed unacceptable.

Results: Cultures were positive in 352/360 (98%) of sites prior to cleaning, with 123/360 (34%) showing microbial density scores > 4; 169/360 (47%) showed any pathogen growth, and 25/360 (7%) showed a pathogen score > 4. After terminal cleaning 308/360 (85%) sites remained culture positive but microbial density > 4 was reduced to 24/360 (7%); 71/360 (20%) showed any pathogen growth and 2/360 (0.5%) showed a pathogen score of > 4. A comparison of differences prior to and after cleaning showed that the patch was as cleanable as the mattress surface. Fifteen months since application all patches remain firmly attached.

Conclusions: The patch appears to be durable and cleanable and may be an application to extend the life of mattresses in healthcare settings.

POSTER BOARD #60

EFFECTS OF A PUBLIC HEALTH ACT FOR UNVACCINATED STAFF AND VISITORS DURING INFLUENZA SEASON IN LONG TERM CARE FACILITIES

Jacqueline Hlak
t, Larry Gustafson, Stephanie Konrad Fraser Health, New Westminster, BC, Canada

In 2012 an Influenza Control Policy requiring health care workers to be vaccinated with the current season’s influenza vaccine or mask while attending a patient care area during influenza season was implemented. The Influenza Control Policy was met with resistance and confusion as the government pulled products to achieve a hotel clean followed by application of the ozone + hydrogen peroxide vapour system cycle was 60 minutes per room. Residual levels of ozone and hydrogen peroxide were undetectable. Mean viable colony count after manual cleaning was 18 colonies/25 cm² and dropped to 0 colonies/25 cm² after treatment with the ozone + hydrogen peroxide vapour system. No further cases of MRSA were detected for 6 months.

Lessons learned: Despite good cleaning practices endemic and epidemic MRSA occurred and high touch surfaces remained contaminated. The commercial ozone + hydrogen peroxide vapour system achieved high level disinfection with zero residual viable colonies in less time than manual cleaning, and was straightforward to use. Our lengthy manual cleaning procedure with expensive liquid disinfectants can be amended to a shorter protocol with lower cost products to achieve a hotel clean followed by application of the ozone + hydrogen peroxide vapour system. A higher level of disinfection is achieved with lower cost providing a safer patient care environment.

POSTER BOARD #64

POSITIVE IMPACTS OF A NEW OZONE AND HYDROGEN PEROXIDE VAPOUR SYSTEM TO DISINFECT PATIENT ROOMS DURING AN MRSA OUTBREAK

Dick Zoutman1,2, Michael Shannon1, Michael de la Roche1, Kelly Brown1, Dorianne Chesterton1

1Queen’s University, Kingston, Ontario, Canada, 2Quinte Health Care, Belleville, Ontario, Canada, 3Medizone International, Sausalito, California, United States

Project: In June 2013 we introduced a new ozone + hydrogen peroxide vapour system for disinfecting 6 rooms linked to this MRSA outbreak. Each room was terminally cleaned with hydrogen peroxide liquid cleaner. 10 surfaces of each room were cultured using touch plates after the cleaning. We then treated each room with the ozone + hydrogen peroxide vapour system and repeated the cultures.

Results: Manual cleaning took 90 minutes while the ozone + hydrogen peroxide vapour system cycle was 60 minutes per room. Residual levels of ozone and hydrogen peroxide were undetectable. Mean viable colony count after manual cleaning was 18 colonies/25 cm² and dropped to 0 colonies/25 cm² after treatment with the ozone + hydrogen peroxide vapour system. No further cases of MRSA were detected for 6 months.

Lessons learned: Despite good cleaning practices endemic and epidemic MRSA occurred and high touch surfaces remained contaminated. The commercial ozone + hydrogen peroxide vapour system achieved high level disinfection with zero residual viable colonies in less time than manual cleaning, and was straightforward to use. Our lengthy manual cleaning procedure with expensive liquid disinfectants can be amended to a shorter protocol with lower cost products to achieve a hotel clean followed by application of the ozone + hydrogen peroxide vapour system. A higher level of disinfection is achieved with lower cost providing a safer patient care environment.

POSTER BOARD #66

MOVING FORWARD WITH JUST CLEAN YOU HANDS (JCYH) FOR SMALL RURAL HOSPITALS AFTER FIVE YEARS

Sam MacFarlane1, Jean-Louis Plire1, Linda Howard2

1Public Health Ontario-Champlain Regional Infection Control Network, Ottawa, Ontario, Canada, 2Carleton Place and District Memorial Hospital, Carleton Place, Ontario, Canada

In 2008, the Ministry of Health and Long Term Care launched the Just Clean Your Hands (JCYH) Program, a multifaceted, evidence-based program providing focused education and tools for promotion, evaluation and auditing. Hospitals in Ontario adopted the program, followed its implementation strategies, and reached the five-year assessment milestone. Some rural facilities within the Champlain region of Ontario recognized the need for networking and strategizing to assist in moving their programs forward. Feeling isolated, they lacked the opportunity to discuss their JCYH challenges. On October 17, 2013, Public Health Ontario (PHO) Champlain Regional Infection Control Network (RICN) offered a one-day JCYH symposium to encourage interaction between Infection Control Professionals (ICPs) and JCYH champions from six select rural hospitals. PHO presented a historical and prospective synopsis of the JCYH program. Guest speakers from a large acute care facility shared their innovative approach and subsequent solutions to implementing their JCYH program. Next, participants identified and shared challenges and devised unique approaches to overcome obstacles. Finally, participants wrote a personal goal-setting letter to themselves, reflecting upon the day, which PHO would mail to them in three months’ time. Permitting participants to share their challenges allowed for
UNEXPECTED CONSEQUENCES OF THE REGULATORY RESPONSE TO AN OUTBREAK: AN EXPLORATORY STUDY
Nicola Maund-Jackson, Anne Bialachowski, Christine Lee, Beverly Barretto
University Health Network, Toronto, Ontario, Canada

Issue: The Public Health Agency of Canada was a challenge for the Infection Prevention and Control Practitioners. National guidelines and standards. Assigning and implementing procedures and guidelines was driven by the staff on the units. The program focused on hand hygiene compliance and the need for additional training and support for JCYH practitioners. Evidence supports hand hygiene as one of the most effective ways to reduce hospital-acquired infections.

Project: The Hand Hygiene Star Program was developed as a result of the pilot evaluation. A toolkit has been created as a result of the pilot evaluation. A toolkit has been created as a result of the pilot evaluation. The program was piloted on two units who had high engagement opportunity, where the whole process of identifying problems and solutions was driven by the staff on the units. The program focused on hand hygiene peer recognition. The program was piloted on two units who had high representation in the PD sessions. A toolkit has been created as a result of the pilot evaluation. Results: A comprehensive toolkit allows individual hospital units to implement the Hand Hygiene Star Program. This program directly rewards employees based on peer-to-peer nominations and complements existing organizational initiatives and recognition programs. The toolkit can be tailored to meet the needs and resource availability of the units. The toolkit components include the program outline, implementation checklist, nomination forms, communication samples for electronic and print materials, and ‘super star’ certificate. The implementation of this toolkit to two of our medicine units demonstrated creative solutions to perform hand hygiene, engages the HCW, and produced an overall effect on real change.

Lessons learned: The staff was motivated knowing that a positive part of their daily work was being recognized and those pictures of performance excellence were posted on the unit for all to see. The commitment of unit leadership was essential to the sustainability of this project. The innovation of this toolkit allows any unit to use it with minimal effort.

POSTER BOARD #74
STAR OF HEALTH, STAR OF HAND HYGIENE
Catherine Harlow-Stregeez, Charline D Souza, Lucy Truong, Michael Rostein
Mackenzie Health, Richmond Hill, ON, Canada

Issue: Despite various approaches to support hand hygiene compliance among healthcare workers (HCW) in an acute care setting, sustaining compliance remains a challenge. An identified gap in our organization is behavioral change of HCWs. Evidence supports hand hygiene as one of the most effective ways to reduce hospital-acquired infections.

Project: The Hand Hygiene Stat program was developed as a result of a series of positive deviance (PD) education sessions that were held, focusing on novel approaches to addressing hand hygiene compliance. This project was an engagement opportunity, where the whole process of identifying problems and solutions was driven by the staff on the units. The program focused on hand hygiene peer recognition. The program was piloted on two units who had high representation in the PD sessions. A toolkit has been created as a result of the pilot evaluation.

Results: A comprehensive toolkit allows individual hospital units to implement the Hand Hygiene Star Program. This program directly rewards employees based on peer-to-peer nominations and complements existing organizational initiatives and recognition programs. The toolkit can be tailored to meet the needs and resource availability of the units. The toolkit components include the program outline, implementation checklist, nomination forms, communication samples for electronic and print materials, and ‘super star’ certificate. The implementation of this toolkit to two of our medicine units demonstrated creative solutions to perform hand hygiene, engages the HCW, and produced an overall effect on real change.

Lessons learned: The staff was motivated knowing that a positive part of their daily work was being recognized and their pictures of performance excellence were posted on the unit for all to see. The commitment of unit leadership was essential to the sustainability of this project. The innovation of this toolkit allows any unit to use it with minimal effort.
tation of interventions to prevent further transmission of norovirus and to avoid prolonged outbreaks in the future. The toolkit contains action plans for the Infection Prevention and Control (IPAC) team and other key stakeholders. The kit also states the case definition, outbreak threshold and the parameters for declaring the end of an outbreak.

Results: A toolkit was developed using information obtained from key national and international guidelines for control of norovirus/gastrointestinal outbreaks and from the lessons learned from previous outbreaks. The toolkit has been reviewed and refined during subsequent gastrointestinal outbreaks and has proven to be an invaluable resource for the IPAC team and other hospital stakeholders.

Lessons learned: Controlling norovirus outbreaks in a mental health setting can be extremely challenging due to the physical environment and on occasion the patients’ inability to comply with outbreak interventions. In order to halt the transmission it is important to review the physical environment and examine all possible factors that could contribute to prolonged outbreak. The containment of the transmission was challenging due to multiple and ongoing outpatient programs in adjoining areas which share space and staff with the inpatient unit. Patients had access to shared foods in the dining room after hours, which was against the outbreak management recommendations.

POSTER BOARD #78

EVALUATING HAND HYGIENE SINKS IN AN ACUTE CARE FACILITY: DO WE MEASURE UP?

Maja McCurry, Sandra Callery
Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada

Issue: The Canadian Standards Association (CSA) standard Z6000-11, Canadian Healthcare Facilities, outlines the design specifications for hand hygiene sinks within healthcare facilities. As part of our preparations for Accreditation 2013, an audit was performed to assess the state of our inpatient unit hand hygiene (HH) sinks as related to the standard. Issues and recommendations were collated and shared with our inpatient units, Plant Operations and Maintenance (POM) and Corporate Planning and Development.

Project: An audit was performed by Infection Prevention and Control (IP&C) to identify design and space deficiencies of hand hygiene sinks in acute care inpatient units within our facility. Each unit and hand hygiene sink station was evaluated using the following criteria: Presence and number of HH sinks; Location of sink with respect to adjacent equipment/supplies; Design of HH sink station; Presence of impermeable backsplash; Presence of aerator.

Results: Audits were completed on 17 inpatient units, and included 46 HH sink stations. The most common issues identified were the presence of an aerator, missing backsplash and location of supplies beside a sink. There were also a small number of clinical units lacking any appropriate hand hygiene sink.

Lessons learned: Annual audits of hand hygiene sink stations is recommended to identify new issues with design and space. An ongoing working relationship between IP&C and POM is needed to ensure standard elements around HH sinks remain consistent over time. IP&C needs to work with inpatient unit staff to ensure that patient equipment and/or supplies are placed at least 1 metre away from a HH sink to prevent contamination. IP&C shall have input on the design specifications of all sinks that will be installed to ensure sinks meet minimum dimensions and specifications as per CSA Standard.

POSTER BOARD #80

EVALUATION OF A PROVINCIAL CLOSTRIDIUM DIFFICILE INFECTION SURVEILLANCE SYSTEM IN NEW BRUNSWICK, 2013: USING DATA TO INFORM PUBLIC HEALTH PROGRAMMING

Louis Wong1, Jane Stafford2, Rita R. Cad2, Tamara Carroll1, Kellie McLean1, Marie-Therese Carisse1, Mitra Bhakpour1
1Canadian Field Epidemiology Program, Public Health Agency of Canada, Fredericton, New Brunswick 2Communicable Disease Control Branch, Office of the Chief Medical Officer of Health, Department of Health, Fredericton, New Brunswick

Issue: The incidence of healthcare-associated C. difficile infection (H-CDI) in Canada has increased. In 2010, CDI became a reportable disease in New Brunswick (NB). A surveillance system was implemented, but ceased due to low participation and limited stakeholder engagement. In 2012, there was increased interest in publicly reporting H-CDI. However, there was limited data on the incidence and distribution of CDI in NB in healthcare facilities. [65]

Project: A hospital-based surveillance system was developed in partnership with infection prevention and control professionals (ICPs) in acute care hospitals from both regional health authorities. Prospective surveillance of CDI commenced on 1 April 2011. Incidence rates were reported in a monthly report. An online survey was administered to ICPs to assess the acceptability of the surveillance system and reliability of the case classification algorithm. The survey included 20 standardized case scenarios that ICPs classified using the algorithm. An intraclass correlation (ICC) coefficient was calculated to measure the reliability between raters. [89]

Results: From 1 April-31 December, 463 cases of CDI were reported; 33% were hospital-associated. The incidence of hospital-associated CDI was 0.24/1000 patient days (95% confidence interval 0.21-0.28). Over half of cases (57%) were attributed to an unknown source. Nine of 13 (69%) invited ICPs participated in the survey. A majority of survey respondents (71%) indicated that their participation added value to their day-to-day work. 50% of respondents found the monthly reports inform their practice. The intraclass correlation coefficient was 0.49 (95% confidence interval 0.08-0.77). [87]

Lesson learned: The incidence of hospital-associated CDI in NB is less than the Canadian rate. The high acceptability of this surveillance system illustrates the importance of collaborating with frontline staff to develop tools early in the process. The reliability among raters was fair and follow-up interventions may reduce variability and improve the utility and value of existing tools. [56]
Lessons learned: A comprehensive e-triage tool ensures timely isolation of potentially infectious patients. It reduces the number of staff exposures to communicable diseases. An additional benefit of the e-triage tool is that it reinforces IPAC principles regarding initiating AP and empowers staff to initiate them as the clinical status of patients changes.

POSTER BOARD #100

A COLLABORATIVE APPROACH TO DIAGNOSING VENTILATOR-ASSOCIATED PNEUMONIA IN THE NEONATAL INTENSIVE CARE UNIT

Megan Clarke1, Michelle Science2, Michael Finelli1, Hilary Whyte1,2, Jillian Lewis1

Issue: A review of ventilator-associated pneumonia (VAP) rates in our Neonatal Intensive Care Unit (NICU) prompted evaluation of the current method of diagnosis. After a review of published definitions for VAP, it was decided that adaptation to the neonatal context was necessary.

Project: An interdisciplinary team including physicians (neonatologists and infection disease), Respiratory Therapists, and Infection Prevention & Control was created to develop an NICU consensus definition for VAP. A literature review was conducted and other level 3 NICUs in Canada were contacted. VAP definitions were evaluated and compared and a consensus definition was established through panel discussion.

Results: A consensus definition was created by adapting available VAP definitions to our local NICU context. This definition was sent to the key stakeholders, including medical staff and respiratory therapists. The possible methods of identification of patients with VAP were reviewed and assessed for feasibility. It was decided that the Infection Control Practitioner (ICP) would identify patients with suspected VAP through chart review and confirm with the responsible Neonatologist that the consensus VAP criteria was met. In addition, any patient identified by the responsible Neonatologist as meeting the criteria would be reported to the ICP.

Lessons learned: Both a collaborative approach to developing a VAP definition, in addition to buy-in from key stakeholders to support the need for more refined VAP definition was essential. By having a definition that works for our patient population, we are now able to better target improvement strategies related to VAP.
PREVENTION A Port in Any Storm
IPAC CANADA 2014 NATIONAL EDUCATION CONFERENCE
HALIFAX, NOVA SCOTIA, MAY 25-28, 2014

POSTER PRESENTATIONS

Project: We considered the following: 1) How is the equipment being used in the study i.e., is the equipment is considered non-critical, semi-critical, critical or having no contact with the study subject(s)? 2) Is the technology approved by Health Canada? 3) Is the sterilization technology approved by the provincial or local health authority? 4) Is the technology approved for use in Canada consistent with what is outlined in the study protocol and the manufacturer’s instructions? 5) Are there standards or guidelines already in place? 6) Are there other issues in using the same instrument between humans and animals? Results: The ultrasound probe, used to study skin integrity in an animal burn model, was determined to be a non-critical device (touching intact skin in both subjects). Vaporized hydrogen peroxide technology at the time of this investigation is not approved for use in Canada for decontamination/sterilization. It has been approved for use in the United States for decontamination of patient rooms and portable non-critical equipment but not for medical devices. Canadian Standards association (CSA) prohibit the use of any medical device in humans that have been used on animals. Lessons learned: Due diligence and researching multiple sources is vital prior to adoption of any new sterilization technology involving animal-human crossover.

POSTER BOARD #97

A CLUSTER OF HEPATITIS A AND THE PREVENTION OF SECONDARY TRANSMISSION IN A JUNIOR KINDERGARTEN SETTING
Nancy Todd-Giordana, Donna Perron
Ottawa Public Health, Ottawa Ontario, Canada

Background: Ottawa Public Health was made aware of a cluster of hepatitis A cases within a family that occurred over a 2-month period of time. Although some of the cases were exposed through travel to an endemic country, transmission still occurred and three additional cases were identified. As a result of additional testing of close contacts, a four-year-old asymptomatic child was confirmed by serological testing. Since 70% of children less than 5 are asymptomatic virus shedders and may have poor hand hygiene practices,OPH initiated a follow-up of 385 people that resulted in the prophylaxis of 250 individuals. Methods: An investigation was launched, individual case interviews were conducted to identify potential exposures and contacts. Subsequently a site visit to the local junior kindergarten of the asymptomatic cases was also carried out to establish the risk of transmission within this setting, and to educate staff about infection prevention and control strategies. A plan to provide prophylaxis to close contacts was established. Several options were offered, including on-site clinics, family physicians and appointments at the health unit. Results: Prophylaxis was offered to 144 primary and 232 secondary contacts. OPH immunized 97 primary and 133 secondary contacts. In total 31 individuals previously immune. The cost of the investigation was estimated to be just over $43,000. Conclusions: Prophylaxis vaccination should always be considered an appropriate public health measure for controlling the spread of hepatitis A in child care settings or settings where children under five group together.

TUESDAY, MAY 27, 2014

POSTER BOARD #2

BROAD SPECTRUM EFFICACY OF A 70% ETHANOL GEL AND FOAM HAND RUB WHEN TESTED ACCORDING TO HEALTH CANADA RECOMMENDATIONS
Sarah Edmonds1, Robert McCormack2, Collette Duley3, Kelly Burningham2
1GOJO Industries, Akron, OH, 2BioScience Laboratories, Bozeman, MT

Background: In Canada there is a guidance describing efficacy requirements to market an alcohol-based hand rub (ABHR) in healthcare including recommendations for reducing bacteria, fungi and viruses on hands (in vivo). This guidance raises the bar for efficacy since previously many of these organisms were only tested in vitro. The objective of this study was to evaluate two ABHRs for broad-spectrum antimicrobial efficacy using in vivo efficacy standards recommended by Health Canada. Methods: A 70% ethanol ABHR gel and foam were evaluated for bactericidal efficacy using ASTM E 1714 and EN 1500 at a dose of 2.0 ml and 3.0 ml for 30 seconds, respectively. Fungicidal efficacy was evaluated using the fingerpad method (ASTM E2613) for 30 seconds. Virucidal efficacy was evaluated using the whole hand method (ASTM E 2011) with a dose of 3 ml. Results: The gel and foam reduced Escherichia coli by >4 log and Serratia marcescens by >3 log, respectively. The gel and foam reduced Candida albicans by >3.5 log, and Aspergillus brasiliensis by >4 log, respectively. The gel and foam reduced Murine Norovirus by 3.20 and 2.80 log, respectively, and the gel reduced Rotavirus by 4.30 log, Adenovirus by 4.10 log, and Rhinovirus by 3.55 log. Conclusions: Both ABHR exceeded the minimum Health Canada efficacy requirements for the organisms tested. A well-formulated gel and foam ABHR can be highly efficacious with broad-spectrum antimicrobial activity.

POSTER BOARD #5

IMPLEMENTATION OF A CARBAPENEMASE PRODUCING ENTEROBACTERIACEAE (CPE) CONTROL POLICY IN AN ACUTE CARE HOSPITAL
Kasey Gambeta, Matthew Muller
St. Michael’s Hospital, Toronto ON Canada

Introduction: Carbapenemase-producing Enterobacteriaceae (CPE) are multi-drug resistant organisms associated with significant mortality. We address challenges in implementing and evaluating a control policy for CPE at our hospital. Methods: We developed a CPE management policy based on the local epidemiology of CPE and provincial recommendations that addressed issues related to screening and precautions for patients potentially infected or colonized with CPE. Implementation involved direct communication to all physicians and staff through email communications and in-services, on-the-spot training, as well as the development of educational materials, an electronic admission checklist and a flagging system. Implementation was evaluated by monitoring the number of screening specimens performed, reviewing completion rates for the admission checklist, conducting quarterly prevalence studies to identify missed CPE screens in recently admitted patients with risk factors and through tracking our incidence of CPE. Results: Over the 12 months following implementation, 10 CPE cases were identified. Of those with risk factors, 4/7 (57%) were screened. Quarterly admission screening specimens increased from 8 to 44 over six months. Prevalence audits identified risk factors in 4/95 (4.2%) patients at the time of admission, with 1 being appropriately screened. Hospital wide compliance with the admission screening checklist was 51% and did not change over time. Conclusion: Implementing surveillance for a new ARO is challenging. Targeted and repeated education and the use of an electronic admission checklist helped raise staff awareness and increase the number of appropriate specimens collected. However, despite 1 year of efforts, admission screening is only documented for half of patients, and 3 patients with CPE were admitted without appropriate screening. We believe that the metrics we used have helped us recognize gaps in our implementation sooner than reviews focused only on positive patients. Ongoing feedback of these results and repeated education will hopefully allow us to improve our performance going forward.

POSTER BOARD #7

POST-OPERATIVE SURGICAL SITE INFECTIONS: MEASURE, MANAGE & PREVENT!
Shelia Lee1
1Accreditation Canada, Ottawa, Canada, 2National Healthcare Safety Network case definitions (CDACAPIC), Atlanta, United States, 3Safer Healthcare Now, Edmonton, Canada

Background: In 2005, Health Canada introduced a guidance describing efficacy requirements to market an alcohol-based hand rub (ABHR) in healthcare including recommendations for reducing bacteria, fungi and viruses on hands (in vivo). This guidance raises the bar for efficacy since previously many of these organisms were only tested in vitro. The objective of this study was to evaluate two ABHRs for broad-spectrum antimicrobial efficacy using in vivo efficacy standards recommended by Health Canada. Methods: A 70% ethanol ABHR gel and foam were evaluated for bactericidal efficacy using ASTM E 1714 and EN 1500 at a dose of 2.0 ml and 3.0 ml for 30 seconds, respectively. Fungicidal efficacy was evaluated using the fingerpad method (ASTM E2613) for 30 seconds. Virucidal efficacy was evaluated using the whole hand method (ASTM E 2011) with a dose of 3 ml. Results: The gel and foam reduced Escherichia coli by >4 log and Serratia marcescens by >3 log, respectively. The gel and foam reduced Candida albicans by >3.5 log, and Aspergillus brasiliensis by >4 log, respectively. The gel and foam reduced Murine Norovirus by 3.20 and 2.80 log, respectively, and the gel reduced Rotavirus by 4.30 log, Adenovirus by 4.10 log, and Rhinovirus by 3.55 log. Conclusions: Both ABHR exceeded the minimum Health Canada efficacy requirements for the organisms tested. A well-formulated gel and foam ABHR can be highly efficacious with broad-spectrum antimicrobial activity.

POSTER BOARD #10

RETURN TO TABLE OF CONTENTS
results:
precautions to staff and service providers. Policies mirror established communicable disease protocols in acute care. Over community care-related IPAC indicators. Occupational health and immunization comprehensive policy manual, an IPAC committee, and a surveillance dashboard Project: care delivery process.
sector due to differences in resources and the nature and the setting of the client based and have not been as well-established in the community and home care current standards and guidelines. Unfortunately, most program models are acute-based and have not been as well-established in the community and home care sector due to differences in resources and the nature and the setting of the client delivery process.
Project: The organization met the challenge through the development of a multifaceted program led by a certified infection control practitioner, which includes a comprehensive policy manual, an IPAC committee, and a surveillance dashboard of community care-related IPAC indicators. Occupational health and immunization policies mirror established communicable disease protocols in acute care. Over 700 employees received targeted and relevant education. Risk codes communicate precautions to staff and service providers.
Results: The Champlain CCAC's efforts were acknowledged with an Exemplary Accreditation Award with the new IPAC Program achieving 100% compliance. In addition, the organization received a Gold Quality Healthcare Workplace Award from the Ontario Hospital Association.
Lessons learned: More work needs to be done to develop consistent IPAC programs and standards in the community care sector.

POSTER BOARD #11
CONTROL TO THE CRISIS: A GERIATRIC FACILITIES APPROACH TO OUTBREAK MANAGEMENT
Jane Van Toey, Heather Candon, Latha Jacobs, Chningz Amin
Baycrest, Toronto, ON, Canada

Issue: Baycrest is a large geriatric facility in Toronto comprising of a long term care home, a complex continuing care hospital and a senior's apartment complex. With approximately 1000 beds and a frail elderly population, outbreaks, although expected, tended to bring stress and a sense of crisis. Miscommunications were commonly identified with the outbreak management process. The IPAC team felt the outbreak management program needed to be reviewed and redesigned to bring control to the crisis.

Project: The IPAC team, with the assistance of the other stakeholders, conducted a complete a review the outbreak management policies and procedures. The review was designed to identify strengths in the current management protocol as well as areas for improvement. It was determined our outbreak management needed revised revisions to: Be standardized and efficient: Ensure timely, and appropriate level of communication to all stakeholders; Include a process for auditing and ongoing review and improvement.

Results: Through the initial and subsequent reviews of our outbreak management, the process has evolved such that outbreaks are handled in a standardized and efficient manner yet with the flexibility to change and improve. An outbreak, by definition, denotes somewhat of a crisis situation but we are now able to handle outbreaks in a much more controlled fashion.

Lessons learned: The needs of all stakeholders need to be considered and incorporated into the outbreak management process. A multidisciplinary approach and clearly defined roles is essential. Well-documented and regularly reviewed checklists are helpful in assuring a standardized and complete management process.

POSTER BOARD #13
URINARY TRACT INFECTION (UTI) PREVENTION IN CONTINUING CARE: PADDING THROUGH UNCHARTED WATERS
Coven Cerkownik
Patient Safety Unit - Ministry of Health, Saskatchewan, Canada

Issue: UTIs in Continuing Care settings are the leading cause of bacteremia and the most common reason for hospitalization and antibiotic prescriptions. Most current guidance and tools for UTI prevention focus on acute care facilities only. The fledgling Saskatchewan Infection Prevention and Control Technical Advisory Group identified UTI prevention and management as a priority and developed a guideline that is intended to provide criteria to assist healthcare workers to accurately identify urinary tract infections (UTIs) and catheter-associated urinary tract infections (CA-UTIs), provide recommendations to reduce the risk of UTIs/CA-UTIs, and discuss management and treatment options for adult individuals with UTIs/CA-UTIs.

Project: Guidelines for the Prevention and Treatment of UTIs in Continuing Care Settings was developed and released in April 2013.

Results: Recommendations for best practice will not be followed without support and good local evidence. A study was conducted in 6 LTC facilities to determine current practices regarding UTI diagnosis and management. Educational tools were developed to address the discrepancies between current, as identified in the study, and best practices recommended in the guideline. These tools will soon be available to all Continuing Care facilities in Saskatchewan.

Lessons learned: A guideline on its own is not enough to alter current practices in Continuing Care facilities that have limited resources and staff who often work in isolation. Tools that are accessible and focused on front line staff are essential to comply the guideline and reinforce the message that improved resident outcomes and antibiotic stewardship are possible when we follow evidence based best practice guidelines.

POSTER BOARD #15
THE "ISOLATION BOARD": A TOOL FOR ENHANCING HEALTHCARE TEAM COMMUNICATION
Megan Clarke, Lee-Ann Williams, Don Clark
The Hospital for Sick Children, Toronto, Canada

Issue: A review of the types of infection prevention and control (IPAC) issues that IPAC is asked to respond to prompted an investigation focusing on improving the continuity of information that health care teams provide to each other in relation to patient isolation requirements. Historically, after hours, the IPAC team would often be consulted on the same issues that had been discussed during regular work hours.

Project: An “isolation board” was created in three inpatient units that have high volumes of isolated patients. The goal of the isolation board was to provide consistent messaging on isolation plans for patients from shift to shift. A magnetic white board was installed, magnets created in the image of our isolation signs, and the magnets placed beside any patient name requiring isolation precautions. A comment section allows for information regarding positive or pending lab results, and any plans related to disconnecting isolation precautions. “Isolation rounds” take place on a daily basis at the board to ensure every isolated patient is reviewed with the unit charge nurses.

Results: The implementation of these boards resulted in a 50% reduction in after-hours calls related to isolation by the areas utilizing the isolation boards. There has been improved autonomy for the charge nurses utilizing the boards related to patient flow decisions.

Lessons learned: Engagement of the unit charge nurses to participate in reviewing and updating the isolation board was essential. Having up-to-date plans in place for these patients in a visual format is valued by staff.

POSTER BOARD #17
IF IT'S GREEN, IT'S CLEAN
Cara Sudoma, Kathy Maxwell
Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada

Issue: The literature tells us that failure to clean and disinfect non-critical items between patients can be a significant source for the transmission of HAMs. Often patient care items such as commode chairs and shower carts/ chairs are placed in hall ways or equipment rooms due to lack of space in our pediatric patient rooms. There is no visible way to determine if the items have been cleaned or sanitized. Items with plastic wrap is a safety risk in a pediatric environment. IPAC were determined to find a way to alert staff if items were cleaned.

Project: A survey was done asking staff if the items in the hall were cleaned. A majority indicated they did not know. Most staff did not clean the items. The paper towels were in a white box and felt it was someone else’s role. IPAC developed two sided colour cards (green or red). The tag line: If it’s Green, it’s Clean was introduced. All staff were informed of the project and their role in its success. A majority indicated the attachment of the cards were ongoing.

Results: An environmental scan was completed to make sure all items had red/ green cards attached. Audits were carried out and the results were shared with staff. There was an initial period where things did not go as well as we had hoped. Staff were not informed of the project and their role in its success. The staff all felt that this was a good idea and could support the project. Disinfectant wipes were placed strategically in the hallways for accessibility.

Lessons learned: There were initial problems with the attachment of the cards and water in the pouches but this has been resolved. Also involving the parents/ guardians in the project can make the project successful.
POSTER BOARD #19

AN IMPLEMENTATION OF A BEST PRACTICES BUNDLE THAT LEAD TO 100% REDUCTION IN NEONATAL INTENSIVE CARE BLOOD STREAM INFECTIONS

Doreen Alexander, Shaheen Doctor, Wil Ng, Diane White, Kevin Katz
North York General, Toronto, Ontario, Canada

Background: Nosocomial infections, particularly catheter-related blood stream infections (BSI) in the neonatal intensive care unit (NICU), contribute to both short-term and long-term morbidity in neonatal patients. A community hospital Level 2 NICU that cares for infants born at ≥32 weeks gestational age, participated in the NICU Infection Control Initiative, along with six other Ontario NICUs, to reduce nosocomial BSI rates. A bundle of best practices were developed, implemented and audited to decrease the nosocomial BSI rate in each participated hospital.

Objective: To decrease nosocomial BSI rates in North York General (NYG) Level 2 NICU.

Method: BSI baseline 2010 data was collected retrospectively, followed by a full-day workshop on quality improvement techniques and practice change management in May 2011. In June 2011, a best practice bundle was reviewed by NICU health care providers. The best practice bundle included evidence-based recommendations in the following categories: hand hygiene, feeding, line insertion, line maintenance and line removal. 95% of the recommendations were implemented. A critical review of all BSI infections was investigated within 48 hours of occurrence using a standardized template.

Results: NYG NICU catheter-related BSI decreased over one year from 6.3/1000 catheter days to 0/1000 catheter days, resulting in a 100% rate reduction. Among the other six participating NICUs, the overall BSI rate decreased from 9.8/1000 to 4.7/1000 catheter days, resulting in a 52% reduction.

Conclusion: The best practices bundle led to a significant reduction in the rate of nosocomial BSI in our NICU population, which was maintained over a one-year period.

POSTER BOARD #21

DEVELOPING CHECKLISTS TO SUPPORT INFECTION PREVENTION AND CONTROL PRACTICE AT A COMPLEX CARE/REHABILITATION HOSPITAL

Jane Toozé, Linda Shi, Barbara Paul, Sharon O’Grady
Bridgepoint Hospital, Toronto, Ontario, Canada

Issue: Our Infection Control Practitioners (ICPs) identified the need for standardized management approach for certain infection control issues: bed bug cases, respiratory illness outbreaks, proper placement of patients requiring additional precautions, and terminal cleaning.

Project: Development of simple, sensitive, and specific checklists designed to standardize infection control practices quickly and easily by most responsible staff member.

Results: Four checklists were implemented. Bed bug Case Checklist With an increase of cases with bed bugs, nursing and environmental service (ES) staffs faced expanding responsibilities and challenges to eliminate and prevent incidents of bed bugs. This checklist serves as a guide for staff, especially when ICP is not on site. The collaborative approach assists with implementation of time-controlled measures. Unit Respiratory Outbreak Prevention and Control Checklist Checklist developed with stakeholders in order to reflect their needs. It is designed to assist Nursing Staff implement respiratory outbreak prevention and control measures in a timely manner. The list is also designed to improve the ICP’s efficiency and enhance surveillance. IPAC Considerations for Capacity Management on Admission It was identified that existing checklist should be more comprehensive to improve patient flow and communication. Checklist redeveloped to meet current needs and provide prompt screening for infection control bed placement.

Environmental Service Terminal Cleaning Checklist Comprehensive terminal cleaning is an important step in the prevention of hospital-acquired infections. In collaboration with ES a checklist to ensure consistent terminal cleaning based on Provincial Infectious Disease Guidelines was developed. The tool also improves communication and quality checks between ES and Infection Prevention and Control departments.

Lessons learned: Checklists were found to be useful tools by helping to reduce potential errors and omissions in practice caused by lapses in human memory and attention.

POSTER BOARD #23

ALGORITHM FOR INFECTION CONTROL MANAGEMENT OF PATIENTS WITH AN ANTIBIOTIC RESISTANT ORGANISM HISTORY

Cindy O’Neill1, Jocelyn Stigley1,2, Khuloud Nuri2, Gail Fisher1, Jessa Craig1, Patricia Peltsch1, Cheryl Bertrand1, Patricia Perry1, Edwige DeSouza1, Dominik Mertz1,2
1Hamilton Health Sciences, Hamilton, Ontario, Canada, 2Department of Medicine, McMaster University, Hamilton, Ontario, Canada

Background: Hospitalized patients with history of antibiotic resistant organisms (ARO) are empirically isolated until admission ARO screening results are negative. Hospitals, with high occupancy and limited single rooms, struggle with this practice. We identified risk factors for persisting ARO colonization and created an algorithm to determine isolation requirements while awaiting screening results.

Methods: The study was conducted at two tertiary acute care hospitals. An algorithm was created following a review of risk factors and screening results from a derivation population admitted from February through May 2012 and was tested on an independent population admitted from May through July 2012. Data collection for intravenous drug users continued until December 2013 to further assess reliability.

Results: In total, 502 patients with ARO history were evaluated. Screening results were positive in 191 patients (38.0%). The majority of ARO were methicillin-resistant Staphylococcus aureus (291/502, 58.0%) or vancomycin-resistant enterococci (125/502, 24.9%). In the derivation population, a history of < 2 years since last ARO detection was the most significant risk factor (OR 32.8, 95% CI, 7.8-138.7; P < .001). The algorithm included three risk factors and reduced isolations by 53.7%. Only seven patients with positive admission results were not isolated (sensitivity 96.3%, specificity 33.7%). Overall, management was accurate in 69.9% of all isolations.

Conclusion: The algorithm is an effective and highly sensitive tool to determine persistent colonization in patients with an ARO history. Unnecessary isolations decreased by >50% to help improve patient flow and single room utilization.

POSTER BOARD #25

REDUCING THE RISK OF CATHETER-RELATED BLOODSTREAM INFECTIONS IN HEMODIALYSIS PATIENTS

Nancy Peddle, Norma McBride, Kelly Sutherland, Euan Carlisle
St. Joseph’s Healthcare, Hamilton, Canada

Issue: Catheter-related bloodstream infections (CR-BSI’s) are an important quality indicator for our Hemodialysis Program. Although the CR-BSI rate had been consistently low in the summer of 2012 there was a noticeable increase in the number of bloodstream infections resulting in poor outcomes for patients. We began to review some of the existing guidelines from the Association for Professionals in Infection Control and Epidemiology (APIC) and Centers for Disease Control (CDC) for strategies to reduce CR-BSI in patients with chronic renal disease.

Project: APIC and the CDC guidelines include application of an antibiotic ointment at the catheter exit site as an infection risk reduction strategy. In June 2013 the Hemodialysis Program implemented a change of practice with their central venous catheter exit site dressing protocol adding the application of a triple antibiotic ointment. A multidisciplinary team considered project details such as the ordering and storage of the ointment, review of the existing policy, how the ointment would be applied, staff education, and continued monitoring of CR-BSI rates.

Results: After implementing this practice change, CR-BSI rates were further reduced in the latter half of 2013 and continued to remain low. There was a cluster of patients that developed skin irritation and redness at their exit site and cultures subsequently grew yeast. A care plan was created to ensure patients with skin irritation were not treated with antibiotics if the exit site did not actually look infected.

Lessons learned: The quality improvement initiative allowed for the opportunity to review current guidelines and practices. Staff education and training regarding the amount of ointment to be applied at the exit site was important as excess ointment caused dressings to fall off prematurely. More critical assessment of exit sites was needed to ensure antibiotics were not ordered unnecessarily.

POSTER BOARD #27

HAND HYGIENE IN THE EMERGENCY DEPARTMENT: A SURVEY OF AUDITING PRACTICES ACROSS CANADIAN HOSPITALS

Sinead Carson1, Mike Lanouette1, Byuj Borgundvaag2, Allison McGeer1
1Mount Sinai Hospital, Toronto, ON, Canada, 2Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada

Background: Emergency departments (EDs) usually report the lowest hand hygiene (HH) adherence among hospital areas. Data exploring the causes of low adherence, or reporting rates to improve it, are sparse. We aimed to elucidate HH auditing and reporting practices in Canadians EDs.

Methods: Using modified Dillman methodology, we electronically distributed a 25-question survey to infection control staff at Canadian acute care hospitals with at least 30 inpatient beds.

Results: 136 completed surveys were received (77.2% response rate). All EDs surveyed have soap and water and wall-mounted alcohol-based product available for HH; only 37% of EDs have product mounted on equipment. HH audits are performed in 93% of EDs. Most institutions audited weekly (29.8%) or monthly (36.2%), and generally only during weekdays (35% reported auditing on weekends).
or weeknights). One-quarter of respondents do not audit all areas of the ED; triage, ambulatory care, rapid assessment zones and resuscitation areas were most frequently excluded. Two-thirds of institutions surveyed (69.2%, n = 88) report ED adherence data to a provincial body, and the data reported provincially varies widely. Facilities that report ED adherence data to a provincial body tend to have higher ED adherence rates than those that do not, although this pattern failed to reach statistical significance (p = .092). Hospital senior management was rated as placing the most importance on HH in the ED, followed by ED management, and then front-line ED staff (p < .001). The majority of respondents (71.4%) reported that adherence rates are generally lower in their ED compared to other hospital areas.

Mean reported adherence rates for the ED and for the overall hospital were 67.9% and 80.0%, respectively (p < .001).

Conclusions: Practices related to auditing and reporting HH in Canadian EDs vary widely. Shaping information across EDs may assist hospitals in understanding and improving HH in EDs.

POSTER BOARD #29

A MULTICOMPONENT INFECTION CONTROL (IC) PROGRAM IN RESIDENTIAL CARE HOME FOR THE ELDERLY (RCHE)

Jane SY Leung, Hong CHEN, Carol SW YAU, Andrew TT WONG

Infection Control Branch, Centre for Health Protection/Infectious Disease Control Training Centre, Hospital Authority, HKSHA, Hong Kong

Nowadays, more elderly are resided in RCHE due to personal, health or social problems. Promote and maintain IC practices are not easy in these home-like environments. Frequent socialization and shared facilities increase exposure and promotes transmission of infectious diseases. A multicomponent IC program was developed to enhance IC in RCHE.

Project: The multicomponent program consists of six interactive educational modules with knowledge test covering basic IC, environmental hygiene (EH), hand hygiene (HH), Multi-drug resistant organism, medical devices and influenza vaccination; outreach visit and assessment; provisions of alcohol-based hand rub, training kit, posters and reminders emphasizing IC. At end of program, participated RCHEs received training materials in DVD and web format for establishment of structured IC training program in RCHE. Focus group discussions were conducted to collect feedbacks for evaluation.

Results: 32 RCHEs participated in the 2-year program. Improvement is indicated by an overall improvement in knowledge score after educational modules. Assessment of IC practices also showed improvement; EH assessment score from baseline 81.7 to 87.8 at follow-up and HH from 70.2 to 80.2 (both p-values <0.05). Feedbacks from participants in focus groups were positive and valued the launch of program had heightened staff awareness on IC measures.

Lessons learned: Attitude and belief of participants varied greatly, which were influenced by organization holders and staff background. Change in behaviour and strengthen IC practices in this setting was not easy. It provided opportunity to work with RCHEs to improve staff’s IC knowledge and practices. Participants’ recommendations nourish the program content and facilitate rolling out to other RCHEs in Hong Kong.

POSTER BOARD #33

ADHERENCE TO PIDAC BEST PRACTICES AT HOSPITALS IN SOUTHERN ONTARIO

Debbie Demuzo1, Virginia Lien1, Michael Coyne1, Oksana Zaporozan1, Maureen Cividino1

1Public Health Ontario - Central South Region, Toronto, Ontario, Canada

Issue: To determine the adherence to Provincial Infections Diseases Advisory Committee (PIDAC) recommendations with respect to admission screening for Antimicrobial Resistant Organisms (AROs), and laboratory testing methods to help standardize Infection Prevention and Control (IPAC) practices at 16 hospitals within Southern Ontario.

Project: An electronic survey was developed and distributed to the IPAC leads for 16 hospitals within our region. Questions were asked about admission screening practices for Methicillin-Resistant Staphylococcus aureus (MRSA), Vancomycin-Resistant Enterococcus (VRE) and Carbapenemase-Producing Enterobacteriaceae (CPE) including turnaround times for laboratory results, flagging health records of ARO contacts, and criteria used to discontinue contact precautions.

Results: Response rate was 75% (12/16). Admission screening for MRSA and VRE was done at all 12 facilities responding to the survey, however admission screening for CPE was reported by only 2 facilities. There was a wide range of turnaround times (24 to 96 hours) for laboratory results of VRE. In the event a patient is considered a contact of an ARO case, less than one quarter of facilities reported that the chart would be flagged. Criteria to discontinue contact precautions for VRE and CPE were less stringent than recommended by PIDAC.

Lessons learned: This study showed consistent practices for admission screening for MRSA and VRE across 12 hospitals, but few facilities have incorporated CPE into admission screening according to risk factors. All respondents reported that the charts for ARO cases are flagged, but few flag for contacts. It is not known whether this represents a lack of awareness of the most recent PIDAC guidelines, delays in updating policies and procedures and screening tools, or deliberate non-adherence to the PIDAC recommendations. Next steps would be to identify barriers to adhering to the PIDAC recommendations to help inform future versions of the guidelines.

POSTER BOARD #36

CARBAPENEMASE-PRODUCING ENTEROBACTERIACEAE TRACKING THROUGH A VOLUNTARY SURVEILLANCE PROGRAM IN ONTARIO, 2012-2013

Freda Lam1, Samir N. Patel2, Camille Acharon1, Jennifer Robertson1, Cary Garber1

1Infection Prevention and Control, Public Health Ontario, Toronto, Canada, 2Public Health Laboratory-Toronto, Public Health Ontario, Toronto, Canada

Background: To respond to the growing concern of carbapenemase-producing Enterobacteriaceae (CPE) in Ontario hospitals, a provincial voluntary surveillance program was initiated by Public Health Ontario in November 2011 to monitor its magnitude in the province. This surveillance program collected data on both the laboratory testing and patient demographic information. This project describes the laboratory results two years after its implementation.

Methods: Hospitals were asked to submit suspected CPE positive isolates to the Public Health Ontario Laboratory (PHOL) for confirmatory testing. Laboratory data on all confirmed CPE isolates were collected and analyzed, and descriptive analyses were performed.

Results: Between January 1, 2012 and December 31, 2013, 962 isolates were submitted to PHOL for testing and 166 (17%) were confirmed positive. Among the confirmed isolates, the greatest number was submitted by large community hospitals (63%) and acute teaching hospitals (20%). The highest number of positive isolates originated from the Greater Toronto Area, particularly in the Central West Health Integration Network area (33%). The most common CPE were New Delhi-metallo-B-lactamase (NDM-1) producers (43%) and the most common species associated with CPE were Klebsiella pneumoniae (43%) and Escherichia coli (36%).

Conclusions: Provincial surveillance for CPE remains important, as the data indicates geographic differences in Ontario, although the overall presence of CPE remains low. When this laboratory data is coupled with patient epidemiological data, results from this surveillance program will be essential in informing infection prevention and control activities to prevent CPE becoming endemic in Ontario.

POSTER BOARD #38

THE IPAC REVIEW PROGRAM FOR LONG-TERM CARE HOMES

Laura Farrell1, Norma Reese2, Francine Paquette3, Tim Cronsberry3

1Public Health Ontario, Toronto, Canada, 2South Western Ontario Infection Control Network, London, Ontario, Canada, 3Public Health Ontario, Toronto, Canada, South West Ontario Infection Control Network, St. Marys, Canada

Issue: Infection Control Professionals (ICPs) in Long-Term Care Homes (LTCs) must stay current with Infection Prevention and Control (IPAC) best practices and often struggle with tight budgets and priority-setting. The IPAC Review Program (IRP) is a voluntary process that provides LTCs with a review of their IPAC processes and provides reports that prioritize IPAC program deficiencies. These reports can be used as a roadmap for planning.

Project: Public Health Ontario (PHO) South Western Ontario Infection Control Network staff developed a detailed survey tool to document observations during visits to participating LTCs. A tablet is used to input data into the survey tool; other tablet features are utilized to capture data (e.g., camera). The IRP takes a unique approach to improving IPAC practice by providing in-person consultation, prioritized reports, and a follow-up plan to help keep improvements on track. IPAC recommendations are ranked according to their risk. The reports help the ICP identify IPAC issues requiring urgent attention and those that can form part of future IPAC operational planning. Used appropriately, the report should flag areas of concern in time for deficiencies to be corrected, before adverse outcomes occur.

Results: 100% of homes that received a 6-month follow-up visit indicated they found the IRP program helpful in IPAC planning. 93% of homes made changes to their IPAC program based on reviewer recommendations. The presenter will describe the IRP process, share trends from the first two years of the pilot and share stakeholder feedback. Information collected is used to help inform local initiatives and identify areas where improvements can be made in IPAC practices.

Lessons learned: The success of this local project has led PHO to launch a provincial pilot in certain areas throughout Ontario.
POSTER PRESENTATIONS

POSTER BOARD #40
SYNDROMIC SURVEILLANCE AND PROMPT IMPLEMENTATION OF ADDITIONAL PRECAUTIONS FOR DIARRHEA
Fatemah Jinnah, Barbara Catt, Victoria Williams, Sandra Callery, Mary Vearncombe
Sunnybrook Health Sciences Centre, Toronto, ON, Canada

Issue: Prompt initiation of Contact Precautions for patients with new onset of diarrhea is important to prevent transmission of C. difficile. From April 2011 to June 2012, only 60% of oncology patients positive for C. difficile were placed on Contact Precautions at onset of symptoms.

Project: A “Don’t Delay” project started in October 2012 in collaboration with nursing leadership, included a poster campaign and feedback of compliance rates to all inpatient units. Education with case studies was provided to remind staff to consider C. difficile infection (CDI) for new onset of diarrhea in at risk patients and providing direction on initiating Contact Precautions in the patient’s bed-space using a commode chair in multi-bed rooms if a single room was not available.

Results: From November 2012 to January 2014, compliance with the initiation of Contact Precautions at onset of diarrhea increased on the oncology units to 98%. A total of 243 patients developed new onset of diarrhea after admission: 46 patients (19%) were moved to a single room and placed on Contact Precautions, 39 (16 %) were already in a single room and Contact Precautions were initiated; the remaining 153 (62%) patients had Contact Precautions initiated within the bed space. Initiation of precautions was delayed by 12 -24 hours in 7 (3%) cases. A total of 41 (17%) of the 243 cases with diarrheal illness tested positive for the C. difficile toxin gene by PCR; 22 of these cases (54%) were nosocomial.

Lesson learned: Introduction of a “Don’t Delay” campaign facilitated prompt implementation of contact precautions until CDI could be ruled out.

POSTER BOARD #43
SMOOTHING THE WAVES WITH MEDICAL DEVICE REPROCESSING STANDARDS
Melissa Steele-Roberts
Eastern Health, Newfoundland, Canada

The presentation will provide a general overview of the CSA Z134 series of medical device reprocessing standards. The CSA Standards help to guide the policies and procedures used in everyday practice and provide health care facilities (ICP/MDR staff with a guide on standardized approach to traceability, reporting, education and documentation for routine practices. The Standards provide essential background knowledge and resource information for the infection prevention and control practitioner. Topics will include: Standards development process; General requirements; Standards application.

POSTER BOARD #44
CERTIFICATION: A LICENSE TO SAVE LIVES
Cathy Esposito
CSA Group, Toronto, Canada

The role and expertise of the medical device reprocessing personnel have become crucial in the prevention and spread of infection and disease through skilled and knowledge needed in the task of instrument and equipment reprocessing. CSA’s Certified Medical Device Reprocessing Technician (CMDRT) is the only national certification program based on Canadian standards and best practices with a goal of promoting a safer and more effective practice. Presentation highlights include: Purpose of the Certification; Benefits of certification; Program structure; Case study.

POSTER BOARD #46
COMPARISON OF THE RESULTS OF THREE POINT PREVALENCE SURVEYS OF CARE AND MAINTENANCE OF PERIPHERAL INTRAVENOUS CATHETERS (PICV)
Carla Corriss, Victoria Williams, Sandra Callery, Mary Vearncombe
Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada

Background: CDC-HICPAC (2011) recommends periodic assessment of knowledge and adherence to guidelines for all personnel involved in the insertion and maintenance of intravenous catheters. A point prevalence survey conducted in 2011 identified a high proportion of PICVs that were left in situ >72 hours, not dated, lacking documentation and found local site complications (LSC). Objective: To determine the impact of feedback of the initial point prevalence survey results by follow-up surveys on care and maintenance of PICVs.

Methods: Results from the 2011 survey were shared with stakeholders. As a follow up, two point prevalence were conducted by nursing students in March and October 2013 using a standardized audit tool in five inpatient care units. Chart review and visual inspections, including site and administration line assessment, were performed to determine the date of PICV insertion, site condition, proper labeling and documentation.

Results: A total of 276 PICVs were audited in five inpatient care units in 2011 and 2013. The proportion of PICVs labeled at the insertion site improved from 54.5% (2011) to 58.2% and 61.1% (March and October 2013). PICVs in situ >72 hours has significantly decreased from 38.6% (2011) to 15.4% and 20.6% (March and October 2013) (p value< 0.001, average of 3.22 days in 2011; 2.05 days in March 2013; and 2.52 days in October 2013). LSCs decreased from two local site infections (LSI) and two phlebitis in 2011 to 1 LSI (1%) and no phlebitis in 2013.

Conclusion: Periodic assessment of compliance with best practices with feedback to stakeholders is critical for practice improvement. Improvement in documentation, labeling of site and decreased incidence of local site complication were evident in the 2013 survey results.

POSTER BOARD #48
AUTOMATED MICROBIOLOGY LAB NOTIFICATIONS OF Mtb ORDERS; RESULTING IN TIMELY IMPLEMENTATION OF AIRBORNE PRECAUTIONS
Behnam Nowrouzi-Kia1, Allison McGeer1,2
1University of Toronto, Toronto, Canada, 2Mount Sinai Hospital, Toronto, Canada

Background: Understanding factors affecting trainee physician choices about vaccination may permit the design of more effective vaccination programs. Methods: An online questionnaire based on the Health Belief Model was sent to trainee physicians registered at the post-graduate medical education office at the University of Toronto.

Results: 935 complete responses were received from 1884 residents (52%). Seasonal influenza vaccination rates in 2008, 2009 and 2010 were 69% (448/635), 75% (708/935) and 76% in 2010 (703/935), respectively; 788 (84%) reported receiving the A(H1N1)pdm09 vaccine. In multivariable analysis, number of years of training was positively associated with vaccination rates in trainees. Vaccination rates among resident physicians was significantly reduced (p = 0.0002) in 2010, compared to 2011.

Conclusion: Our work has raised awareness among all clinical teams of the need to implement and maintain appropriate precautions until the diagnosis of active pulmonary TB is either confirmed or ruled out. We can also confidently say we now follow PHAC recommendations “procedure should be in place for rapid identification, isolation and treatment of patients.”

POSTER BOARD #50
EXTERNAL CUES TO ACTION AND INFLUENZA VACCINATION AMONG RESIDENT PHYSICIANS IN TORONTO, CANADA
Behnam Nowrouzi-Kia1, Allison McGeer1,2
1University of Toronto, Toronto, Canada, 2Mount Sinai Hospital, Toronto, Canada

Background: Understanding factors affecting trainee physician choices about vaccination may permit the design of more effective vaccination programs.

Methods: An online questionnaire based on the Health Belief Model was sent to trainee physicians registered at the post-graduate medical education office at the University of Toronto.

Results: 935 complete responses were received from 1884 residents (52%). Reported seasonal influenza vaccination rates in 2008, 2009 and 2010 were 69% (448/635), 75% (708/935) and 76% in 2010 (703/935), respectively; 788 (84%) reported receiving the A(H1N1)pdm09 vaccine. In multivariable analysis, number of years of post-graduate training (OR for post-graduate year 4+ vs. 1-3; 2.2 [95% CI 1.3, 3.8] and 4 of 5 components of the Health Belief Model were associated with vaccination with the 2009 pandemic vaccine; odds ratios were 4.7 (95% CI 3.0, 7.5) for perceived severity, 1.9 (95% CI 1.2, 2.9) for perceived benefits, 0.35 (95% CI 0.21, 0.59) for perceived barriers, and 5.8% (95% CI 3.6, 9.1) for external cues to action. Both vaccinated and unvaccinated residents reported that their decisions were significantly influenced by encouragement from their colleagues, families and employers.

Conclusion: Self-reported vaccination coverage among resident physicians was high. External cues to action appear to be particularly important in trainee physician vaccination decisions: active institutional promotion may increase influenza vaccination rates in trainees.

POSTER BOARD #53
DO YOU HAVE ANYTHING TO DECLARE? YES- MEASLES!
Mirza Ali Murtaza Diwan, Vydia Nanking Singh
Scarborough Hospital, Toronto, ON, Canada

Issue: Measles is a rare disease in Canada due to high vaccination rates. A family with a 1-year-old child returning from the Philippines came to the emergency...
部门（ER）进行两次。通知的气溶胶感染被延迟。感染预防和控制（IPAC）部门与公共卫生部合作，为追踪潜在者的情况并根据暴露指数和风险评估设计可能的接触者。

Investigation: IPAC团队完成了对病人在医院的接触情况的追踪。对病人来说，尤其是那些可能有接触病史的病人，医院的卫生状况和病人搬动都受到了关注。

Results: 通过调查，我们确认了病人在医院期间的接触情况。结果表明，大多数病人都有在医院的接触史。这些接触史的确认对于理解病人的感染风险和预防感染传播至关重要。}

Lessons learned: 在预防医疗感染方面，我们需要更有效地跟踪和管理病人的接触史。这将有助于我们更准确地评估感染的风险和采取更有效的预防措施。
using manufacturer’s instructions. Prior to purchase of AWWs, end users must carefully evaluate design, intended use and ensure mechanisms are in place for monitoring and maintenance.

POSTER BOARD #62

SHINING A LIGHT ON IMPLEMENTATION: A COLLABORATIVE APPROACH TO A SUCCESSFUL IMPLEMENTATION OF ULTRAVIOLET LIGHT TECHNOLOGY

Amanda Stagg, Janice Ward, Stephen Cook, Betty Best, Jeff Powis

Toronto East General Hospital, Toronto, Canada

Issue: Hospital acquired infections (HAIs) contribute significantly to patient morbidity and mortality. A major factor in the prevention of HAIs is improvement to disinfection practices at healthcare facilities. Novel technologies, such as Ultraviolet light (UV), are exciting tools to improve hospital disinfection, yet the appropriate process for implementation is uncertain. We introduced UV technology at our hospital through a collaborative approach in Infection Prevention and Control (IPAC) and Environmental Services (EVS) facilitated by a Process Improvement Working Group (PIWG).

Project: A large urban community hospital introduced UV technology into its Intensive Care and Respiratory Unit as an additional step to the organization’s multifaceted *Clostridium difficile* (*C. difficile*) prevention program. The UV system was used for all single occupancy rooms, specifically targeting the discharge rooms of *C. difficile* positive patients in an effort to decrease the bioburden of *C. difficile* spores. A PIWG was developed to establish communication and served as a platform for discovery. Continuous reevaluation based on end-user feedback and surveys led to regular system improvements.

Results: The implementation of the UV technology was assessed over a number of intervals to control barriers and determine interventions. The interventions of the PIWG led to the matching of EVS resources to timing of hospital discharges, and a 33% (p <0.001) reduction in the time required to disinfect a room with the UV device. The machine has been successfully integrated into both units as part of their cleaning practice and further deployment within the organization is scheduled.

Lessons learned: UV technology can be used to improve hospital disinfection; the process for implementation requires fostering relationships between IPAC and EVS. The continuous reevaluation with PIWG end-users to explore barriers and develop interventions will allow for innovative solutions. Organizations seeking new and advanced standards in environmental disinfection should consider a collaborative approach to attain success during implementation of novel technologies.

POSTER BOARD #63

A COMPARISON OF THE NNIS AND COLA RISK INDICES FOR PREDICTING SURGICAL SITE INFECTION IN PATIENTS UNDERGOING GASTROINTESTINAL SURGERY

Lorraine Maze dit Mieusement, Mount Sinai Hospital Infection Control Team

Mount Sinai Hospital, Toronto, Canada

Background: The National Nosocomial Infections Surveillance (NNIS) risk index, has been criticized for use in colorectal surgery as it does not account for aspects of surgery at the site of greatest bacterial colonization in the human body. The COLA (contamination class, obesity, laparoscopic surgery, ASA score) risk index was developed for SSI risk after colorectal surgery. We asked which index would perform better in surveillance of SSIs at a Toronto teaching hospital, and if the COLA index also applies to patients undergoing small bowel surgery.

Methods: Patients undergoing small bowel, colon and/or rectal surgery between November 1, 2012 and January 31, 2013 were followed for 30 days for the appropriate process for implementation is uncertain. We introduced UV technology at our hospital through a collaborative approach in Infection Prevention and Control (IPAC) and Environmental Services (EVS) facilitated by a Process Improvement Working Group (PIWG).

Project: A large urban community hospital introduced UV technology into its Intensive Care and Respiratory Unit as an additional step to the organization’s multifaceted *Clostridium difficile* (*C. difficile*) prevention program. The UV system was used for all single occupancy rooms, specifically targeting the discharge rooms of *C. difficile* positive patients in an effort to decrease the bioburden of *C. difficile* spores. A PIWG was developed to establish communication and served as a platform for discovery. Continuous reevaluation based on end-user feedback and surveys led to regular system improvements.

Results: The implementation of the UV technology was assessed over a number of intervals to control barriers and determine interventions. The interventions of the PIWG led to the matching of EVS resources to timing of hospital discharges, and a 33% (p <0.001) reduction in the time required to disinfect a room with the UV device. The machine has been successfully integrated into both units as part of their cleaning practice and further deployment within the organization is scheduled.

Lessons learned: UV technology can be used to improve hospital disinfection; the process for implementation requires fostering relationships between IPAC and EVS. The continuous reevaluation with PIWG end-users to explore barriers and develop interventions will allow for innovative solutions. Organizations seeking new and advanced standards in environmental disinfection should consider a collaborative approach to attain success during implementation of novel technologies.

POSTER BOARD #65

DEVELOPMENT OF INFECTION CONTROL POLICIES AND PROCEDURES FOR A NEW BRACHYTHERAPY PROGRAM IN CANCER CARE

Judy Teare1, Viola Tang2, Kristie Harding3, Brenn Ryder4, Andrea McQuilling5, Robyn Hunter2,1, Ghada Al-Rawahi3, Alison Chart5, Kim Mallory5

1BC Cancer Agency, Kelowna, BC, Canada, 2BC Cancer Agency, BC, Canada, 3Provincial Health Services Agency (PHSA), BC, Canada

Project: Brachytherapy involves the implantation of radiation sources directly into or around a malignant tumor. Its efficacy in treating localized prostate, uterine and cervical cancers has been established. Newer sites include breast, thyroid, lung and head and neck cancers. High-dose radiation (HDR) brachytherapy treatment uses hollow needles to guide catheters into and around the tumors and allow delivery of radiation sources directly to the tissue. The use of the catheters and needles put patients at increased risk of infection.

Issue: Brachytherapy involves the implantation of radiation sources directly into or around a malignant tumor. Its efficacy in treating localized prostate, uterine and cervical cancers has been established. Newer sites include breast, thyroid, lung and head and neck cancers. High-dose radiation (HDR) brachytherapy treatment uses hollow needles to guide catheters into and around the tumors and allow delivery of radiation sources directly to the tissue. The use of the catheters and needles put patients at increased risk of infection.

Results: New technologies, equipment and procedures provided an opportunity to re-evaluate current Infection Control Practices. Challenges to procedure implementation included costs of disposable needles, development of validated reprocessing instructions for locally manufactured devices, identification of patient risk factors and ensuring effective communication among the interdisciplinary team. Despite these challenges, specific strategies directed at preventing the transmission of pathogens in the unique setting of brachytherapy were successfully achieved through teamwork.

Lessons learned: Infection Control policies and practices and quality patient care may be impacted by restricted financial resources. However, adequate risk assessment can impact decisions to ensure the delivery of a safe, patient-centered program.

POSTER BOARD #67

PROVINCIAL INFECTION PREVENTION AND CONTROL RESOURCES FOR CONTINUING CARE

Christine Kraus, Maureen Kano, Karen Cargill, Betty Soanes, Linda Sminioski, Brenda Jenkins, Yvette Gable, Sara Gallinger, Nicole Henderson, Lori Pohl, Joy Scott, Heather MacLaurin, Janine Stoesz, Pamela Armstrong, Karen Hope, Sue Laferty, Reta Wheeler

Alberta Health Services, Alberta, Canada

Issue: At the beginning of this project, Alberta Health Services (AHS) was responsible for supporting infection prevention and control (IPC) practice for 23,246 Continuing Care (CC) beds in the province. There was no provincial IPC resource manual for Alberta CC which resulted in disparity in infection control practices province wide. A common issue in CC facilities is finding the balance between resident safety and providing a “home-like” environment while understanding the psychosocial risks that may accompany isolation.

Project: AHS IPC program formed a working group of infection control professionals responsible for continuing care across Alberta. The guiding principle was to acknowledge a continuing care facility is the residents’ home and any additional precautions must be balanced with quality of life. The resource manual focuses attention on routine practices emphasizing point-of-care risk assessments. It includes: a disease and condition table, information sheets, signs for additional precautions, Antibiotic Resistant Organism management guide and an overall emphasis on routine practices. A formal evaluation is planned at the six month and one year anniversary.

Results: The AHS IPC Continuing Care Resource Manual was launched in November 2013. Published on-line, it allows easy access by all CC sites. Early feedback has been positive. The practice change is expected to improve the use of routine practices and when to implement additional precautions in CC.

Lessons learned: Collaboration of Infection Control Practitioners, ensuring stakeholder involvement and a coordinated education plan was essential to the successful launch of this resource manual.

POSTER BOARD #69

PARADISE BY THE DASHBOARD SITE: A JOURNEY THROUGH THE DEVELOPMENT OF AN ELECTRONIC SURVEILLANCE SYSTEM

Nicki Gill, Andrea Neil, Janice DeHeer

Interior Health, British Columbia, Canada

Issue: The Interior Health (IH) Authority had no standardized Healthcare Associated Infection (HAI) surveillance system. An electronic surveillance program was purchased in 2006 and implemented in 22 acute sites. In 2010, the product was discontinued as the company was no longer providing support for the
program. With the support of the IHN senior executive team, Infection Prevention and Control (IPAC) and Information Technology (IT) collaborated to build an ‘in house’ (Infection Control Dashboard) HAI surveillance system using an electronic application already hosted on the health authority computer platform.

Project: A review of national references and legislative mandates formed the basis for development of surveillance parameters. Process mapping was used to develop standardized HAI definitions and worksheets were created to determine if the case meets the definition criteria. Consistent data sources (microbiology results, admission/discharge information, surgical data) are obtained from the patient electronic medical record. Standardized report templates were developed for data dissemination.

Results: Reliable, valid data presented in a consistent format to stakeholders has been useful for implementing performance improvement processes to reduce HAI rates and improve patient outcomes in IHN.

Lessons learned: The introduction of active, prospective, electronic HAI surveillance has allowed for identification of infection rate increases, recognition of adverse trends and assessment of performance improvement initiatives. Standardized HAI definitions prevent variability in surveillance techniques and ensure valid data is provided. IPAC quality initiatives are essential for decreasing HAs and improving patient outcomes. It takes teamwork to build and maintain an efficient HAI electronic surveillance program.

POSTER BOARD #71

UNDERGRADUATE NURSING STUDENT SATISFACTION AND INTENT TO COMPLY WITH THE ONLINE INFECTION PREVENTION AND CONTROL EDUCATION ORIENTATION

Shaunattonie Hudson-Henry
University Health Network, Toronto, Ontario, Canada

Background: Nurses and nursing students are primarily among the frontline healthcare professionals, who provide continuous patient care in healthcare settings and are exposed to various potentially infectious body fluids as an occupational risk. Studies have indicated that health care organizations struggle with meeting the levels of infection prevention and control compliance that minimizes hospital-associated infections and healthcare exposures. As such, studies have explored factors that prevent compliance with infection control practices and the majority of the recommendations identify lack of education/training as one of the primary underlying and enabling factors. The purpose of the quantitative study is to assess undergraduate nursing students’ satisfaction and intent to comply with the current online infection prevention and control education at a major academic facility in the Toronto area.

Method: A voluntary convenience sample of 64 undergraduate nursing students, currently practicing in a large quaternary healthcare facility for the semester. An anonymous online tool was used to administer the inclusion criteria and the survey on a 6-point Likert Scale.

Results: Descriptive statistics were used to summarize the study results as levels of satisfaction with information provided on routine practice, additional precautions, and the training material/delivery methods used. Compliance intent was reported as levels of agreement to follow infection control summary and routine practices.

Conclusions: Respondents reported their levels of satisfaction and intent to comply with the infection control education information provided. Respondents provided feedback to assist improvement of the on-line learning material and experience. The findings also provide an opportunity to conduct further research into on-line education program development.

POSTER BOARD #73

URINARY CATHETER DRAINAGE BAG MANAGEMENT IN LONG TERM CARE

Susan McKinley, Melissa Jenkins*, Patyl Kawding
Shannex, New Brunswick, Canada, Shannex, Nova Scotia, Canada

Issue: Care of leg/night bags for urinary drainage catheters varies among long term care facilities (LTCF). Some facilities have implemented procedures similar to home care where the client cleans and reuses the drainage bag. Some facilities disconnect the leg bag directly from the catheter to change to a new drainage bag, others use different solutions to cleanse the bag. These procedures increase the risk of a urinary tract infection (UTI). A literature review was conducted finding no evidence supporting re-using or cleaning drainage bags. An environmental scan was used to develop standardized HAI definitions and worksheets were created to determine if the case meets the definition criteria. Consistent data sources (microbiology results, admission/discharge information, surgical data) are obtained from the patient electronic medical record. Standardized report templates were developed for data dissemination.

Results: Reliable, valid data presented in a consistent format to stakeholders has been useful for implementing performance improvement processes to reduce HAI rates and improve patient outcomes in IHN.

Lessons learned: The introduction of active, prospective, electronic HAI surveillance has allowed for identification of infection rate increases, recognition of adverse trends and assessment of performance improvement initiatives. Standardized HAI definitions prevent variability in surveillance techniques and ensure valid data is provided. IPAC quality initiatives are essential for decreasing HAs and improving patient outcomes. It takes teamwork to build and maintain an efficient HAI electronic surveillance program.

POSTER BOARD #75

TEACHING TRANSMISSION TO THE TROOPS

Catherine Hartlen-Strezo, Charnaine D’Souza, Kornelia Delibasic, Michael Rütstein
Mackenzie Health, Richmond Hill, ON, Canada

Issue: Challenges exist when teaching front line staff the Chain of Transmission. These challenges include ensuring staff understand and apply the importance of hand hygiene, cleaning of shared equipment, use of signage, and routine practices at the appropriate care juncture. Staff are familiar with the chain of transmission, but this interactive tool facilitates connecting the link to the ‘why’ of infection prevention principles.

Project: Reviewing literature on the art of teaching reflects on the fact that adult learners comprehend the information when engaged in the learning task. A simple tool incorporating a poster board and a selection of images as an interactive piece was used for this project. The goal of this project was to engage staff through active participation to enhance communication of concepts and facilitate knowledge translation which then can be applied to their work environment. The Infection Control Practitioner acts as a facilitator for this activity where the healthcare worker (HCW) places a card on the poster board. In this safe and encouraging environment filled with positive feedback motivates others who may be hesitant to participate. Cards were added to include strategies to implement in order to break the chain of transmission at the appropriate care juncture.

Results: Participants enjoyed the session and articulated understanding of the content in this method as opposed to a didactic format. HCWs became engaged in the exercise as a group through discussion of why a card placed on one link may or may not be better placed on another link.

Lessons learned: Connecting established ‘basic’ information with an active participation session proved to be a useful tool for education. Time is required to be allocated to allow for the participants to consider the scenario presented to them. Existing relationships with participants facilitated the development of a safe learning environment.

POSTER BOARD #77

SKIN ANTISEPTIC APPLICATION METHOD THAT MEETS HEALTH CANADA REQUIREMENTS FOR A PROFESSIONAL USE DRUG PRODUCT

Kathy McGhee, Stephanie Levesque
3M Canada, London, Canada

Background: According to the Health Canada Guidance Document, Human-Use Antiseptic Drugs, antiseptics used in healthcare facilities must meet rigorous efficacy standards to be designated professional use products. This enhanced rigor provides optimum protection for patients exposed to high-risk environments and organisms, and for whom the safety risk is highest. The objective of this study was to demonstrate that applying chlorhexidine antiseptics using a back and forth cross-hatch method meets Health Canada efficacy requirements for a professional use DIN and does not result in contamination of the treatment area.

Methods: Using ASTM E1713, manufacturer recommended application times and volume of antiseptic: 0.5% chlorhexidine gluconate/70% isopropyl alcohol, 2% chlorhexidine gluconate/70% isopropyl alcohol and 2% aqueous chlorhexidine gluconate solutions were applied to 20cm X 20cm areas on the abdomens of test subjects using repeated back and forth strokes. Samples were obtained at baseline and post application of the antiseptic and neutralizing agent from the centre, mid-way, and periphery of the treatment areas. Bacterial log reduction from baseline were calculated.

Results: Mean bacterial log reduction measurements measured at each sampling site: centre, mid-way, and periphery, met the Health Canada requirement (a 2 log reduction) and were determined to be clinically equivalent throughout the treatment area.

Conclusion: Despite the lack of data to support efficacy, the traditional concentric circle method for applying skin antiseptics is still widely used. Required bacterial log reductions were achieved with all three chlorhexidine solutions using the back and forth cross-hatch method for the majority of test subjects. This method demonstrates efficacy of a non-traditional application method with no recontamination of the area prepped.

POSTER PRESENTATIONS
POSTER BOARD #79

50 SHADES OF SAFETY!

Chantal Bellerose, Cynthia Certostni, Silvana Penna, Jocelyne Pepin, Pearl Orzenstein, Julie Valiquette, Lianne Dzygula, Markini Arnutlu

Issue: Healthcare requires vigilance towards the alignment of all patient safety initiatives and the encouragement of opportunities for education, evaluation, implementation and spread of best practices. At the Jewish General Hospital (JGH), we value collaborative efforts towards continuous quality improvement in the domain of infection prevention and control (IPAC). The Quality Program, team leaders, patient representatives and the IPAC team members worked collaboratively towards creating this innovative educational activity representing a real life mock room simulation.

Project: This unique initiative aims at reinforcing interdisciplinarity, teamwork & communication towards identifying, reporting and preventing high-risk situations. Teams identify as many breaches to safety they can within 10 minutes. It helps set the tone for increased accountability in a climate that helps to recognize their top safety risk areas for improvement, best practices reviews, allowing for innovations and successful implementations.

Results: During Patient Safety Week, 30 units were visited during the evening shifts. In addition, active participation of staff was encouraged during the day shift’s JGH safety fair kiosk. Over 500 professionals, staff and physicians participated and positively evaluated this activity. Competition amongst team members and between teams added to a sense of pride in identifying high-risk situations and shared accountability towards success of patient safety initiatives implemented and their outcomes. Teams were encouraged to evaluate: What are they doing well? What can they do better?

Lessons learned: Most teams were able to spot over 80% of preventable errors and high-risk situations. Interdisciplinary participation in this activity increased the variety of risks identified. This exercise fosters a speaking-up & listening-up climate when complex situations and breaches arise, leading to better outcomes. Teams reflected on their safety culture: top 10 risks and the many aligned initiatives they are involved in. This activity further highlights the importance of involving patients and families as partners in safety improvements.

POSTER BOARD #81

EFFECT OF USING SIMULATION ON STAFF HAND HYGIENE EDUCATION

Laura Nicholson, Tara McCulloch, Aurora Wilson

Background: Staff hand hygiene education is multi-modal (i.e., lecture, demonstration, and e-learning). The challenge is to find the right blend of learning models, meeting staff needs while increasing and sustaining compliance. A long-term care facility and an academic institution collaborated to explore the effects of two low-cost hand hygiene simulations on staff education. Audits explored the effects of the simulation education on staff hand hygiene compliance.

Methods: Recruited from a population of N = 248, a convenience sample of regular and understanding providers were randomized to one of three project arms: No intervention, Group A (n = 16); Group B (n = 20) rubbed their hands with fluorescent powder, performed hand hygiene, assessed their hands for powder residue under ultraviolet light, and received no feedback. Group C (n = 13) watched a hand hygiene video, rubbed their hands with fluorescent powder, performed hand hygiene, touched 3 objects, and assessed their hands and the objects for powder residue under ultraviolet light. The feedback mechanism was repeating hand hygiene and visualizing their hands for powder residue under ultra-violet light. Planned were two post-intervention hand hygiene compliance audits.

Results: Kruskal-Wallis test shows no statistical significance in percent compliance between the groups (p = 0.86). Comparing the groups, 2 by 2 using the Wilcoxon Rank Sum Test shows no statistical significance: A and B (p = 0.72), A and C (p = 0.86); B and C (p = 0.63). Logistic regression indicates that unregulated workers were 5.13 times more likely to show high compliance than regulated workers (95% CI: 0.39, 66.7, p = 0.41).

Conclusions: Small sample size led to inconclusive results, though compliance trends are noted. This study should be repeated with a larger population to determine the effects of simulation on initial and on-going staff hand hygiene education.

POSTER BOARD #83

POSITIVE FEEDBACK FOR POSITIVE DEVIANCE: EDUCATIONAL INTERVENTION IN A LARGE EMERGENCY DEPARTMENT TRIAGE

Craig Pearson*, Pam Holberton

Issue: In spring 2013, the emergency department (ED) at Foothills Medical Center in Calgary, Alberta switched their electronic health record system. The new system introduces questions regarding influenza like illness (ILI) that are to be asked of the patient at triage. Depending on the patient’s response, a message may appear that instructs the triage nurse to isolate the patient and give them a mask.

Project: Infection prevention and control decided to monitor the adherence to the triage protocol and recognize the nurses that appropriately triaged patients with ILI. Recognition accomplished by emailing the nurse and the nursing manager. The email thanks the nurse for appropriately triaging the patient and explains why this is important. The goal of this intervention is to improve adherence to triage protocol and hopefully reduce the transmission of respiratory viruses within the ED. Nurses that do not appropriately triage a patient are not contacted; this intervention focuses solely on rewarding positive deviant behaviour. To evaluate this intervention, all nurses (n=28) that received a recognition email have been sent a short survey. The survey queries the nurse about whether receiving the recognition email made them more aware of the importance of appropriately triaging ILI patients and whether they believe the emails made them appropriately triage ILI patients more often.

Results: Ongoing qualitative feedback from nursing staff and nursing management is that this intervention has been successful. Staff appreciate being recognized for positive actions rather than negative. A short survey has been sent to the nursing to evaluate the intervention which will be available in the coming weeks.

Lessons learned: The intervention was built into existing daily activities of an infection control professional and therefore did not substantially increase the workload. Depending on the results, this may be a worthwhile activity for other hospitals to undertake.

POSTER BOARD #85

CREATING A ‘TEMPORARY’ MEDICAL SHORT-STAY UNIT (MSSU): INFECTION PREVENTION & CONTROL (IP&C) CHALLENGES

Bronwen Edgar, Sandra Callery, Mary Vearncombe

Issue: Sunnybrook Health Sciences Centre is challenged with occupancy levels greater than 100%. The ‘Drive to 95’ was instituted in 2010/11 to manage increasing Emergency Department (ED) volumes, wait times and ensure timely inpatient discharges from hospital. As part of the strategy, a temporary MSSU was established.

Project: An 11-bed MSSU (length of stay < 72 hours) was created in an outpatient physiotherapy space, presenting several challenges to integration of IP&C best practices.

Results: The unit opened in July 2011. There have been a total of 2692 admissions since opening to end of December 2013; 91% of which were admitted from ED and the remainder direct admissions. In 2013 the monthly average admissions was 86; an average of 22 (26%) of admissions were patients on Additional Precautions (AP). The average length of stay for all AP was 3.2 days. A number of IP&C recommendations were adopted in the unit including: exclusion criteria for admissions (medical and IP&C), washable portable folding walls between beds, macerator waste disposal system and point-of-care mounted hand hygiene product. IP&C exclusion criteria include: patients with active diarrheal illness or enteric infection, patients requiring Airborne Precautions. Other restrictions/limitations include: number of patients requiring AP and their placement within the unit and restrictions for some antibiotic resistant organisms (ARO). To date there have been 3 nosocomial ARO cases, 2 nosocomial Clostridium difficile cases and a norovirus outbreak attributed to the unit.

Lessons learned: ‘Temporary’ can last a long time! The unit has been functioning moderately well since initiation and has managed patients on AP safely. Rates of ARO transmission have been low; there has been one outbreak. The design and implementation of IP&C recommendations could be applied to other scenarios such as emergency planning or temporary displacement of patients during construction/renovation.
FEES AND COFFEE DON’T GO TOGETHER! ENFORCING THE OCCUPATIONAL HEALTH AND SAFETY ACT OF ONTARIO REG. 67/93, S.3.2: A COLLABORATIVE APPROACH

Bronwen Edgar, Natasha Salt, Sandra Callery, Mary Vearncombe
Sunnybrook Health Sciences Centre, Toronto, Canada

Issue: Several Ontario hospitals have recently been cited and/or fined by the Ontario Ministry of Labour for having food and drink in clinical workplaces. This has heightened awareness of the Regulation which states that “No food, drink, tobacco or cosmetics shall be consumed, applied or kept in areas where infectious materials, hazardous chemicals or hazardous drugs are used, handled or stored” (O.Reg 67/93, s. 3.2). A literature review identified outbreaks associated with eating/drinking in patient care areas. Sunnybrook Health Sciences Centre is a 1212 bed tertiary care centre and prohibiting eating/drinking in clinical areas has been challenging.

Project: A policy was developed collaboratively with Occupational Health (OH), Human Resources and Infection Prevention and Control (IP&C) to outline safe practices for eating and drinking in the workplace. The policy addresses 1) the requirement to identify safe areas for eating and drinking and 2) disposal of food/drink in prohibited areas and 3) hand hygiene accessibility in the safe zone. A checklist for evaluation of areas was developed. Clear signage was created to designate areas where food and drink are permitted.

Results: An e-notice has been distributed to all hospital employees outlining the process for enforcement of the Regulation. Clinical Managers and Directors have received the checklist and are performing walkabouts of their areas in collaboration with IP&C and OH to identify spaces for safe eating and drinking. It is expected that all clinical spaces will be assessed and signage posted.

Lessons learned: Old habits die hard. It is difficult to change behaviours of staff and there has been resistance from all disciplines. IP&C continues to remind staff that this Regulation is in place to ensure their safety. To ensure buy-in and compliance, ours has been placed on the clinical units to determine their safe eating and drinking areas.

DEVELOPMENT OF AN OR CHECKLIST FOR THE PREVENTION OF IMPLANTABLE CARDIOVERTER-DEFIBRILLATORS/PACEMAKERS SURGICAL SITE INFECTION

Isabelle Tremblay1, Katherine Kavanagh2, Karen Hillier1, John Conly1,2
1Foothills Medical Center, Calgary, Alberta, Canada, 2University of Calgary, Calgary, Alberta, Canada

Issue: In June 2011, an Electro-Physiology (EP) cardiologist from the Foothills Medical Center (FMC), a tertiary care center of over 1000 beds, approached Infection Prevention and Control (IPC) to investigate a perceived increase in surgical site infections (SSI) related to implantable cardioverter-defibrillators (ICD) and pacemakers (PPM). A retrospective review of the SSI cases and a detailed process review followed.

Project: A one-year review of SSI cases was undertaken in collaboration with IPC and the Cardiac Disease Clinic staff. A process review of pre-, intra- and post-operative procedures was initiated focusing primarily on practices. The findings and recommendations were presented at an interdisciplinary Cardiology Rounds. Collaborative efforts between IPC, operating room staff/educators/nurse clinicians, cardiac disease clinic staff and EP cardiologists resulted in the development of an OR checklist modelled after the successful OR Checklist from World Health Organization (WHO).

Results: During the period of 01/10/2011 to 30/09/2013, 1308 procedures were performed at FMC and 13 cases (rate: 1.0%) were identified with an SSI (based on the CDC criteria). The process review revealed a lack of standardized protocol for antibiotic prophylaxis (timing, dosage), skin antisepsis (application), cleaning and disinfection of electronic equipment and post-op wound care. Poor compliance with theatre discipline (e.g. PPE, hand hygiene, traffic control) was also noted. Following this review, IPC recommendations were given and an intra-operative OR Checklist was formulated. IPC surveillance is ongoing.

Lessons learned: The process review was very valuable and led to the identification of gaps not only in surgery but also in all clinics servicing the ICD/PPM patients. The review has increased awareness amongst staff to review practices in their own clinical setting as well as stimulating the development of an ICD/PPM OR Checklist specific to their discipline.

METING THE DEMANDS OF QUALITY IMPROVEMENT: PREPARATIONS FOR A SUCCESSFULL SURGICAL SITE INFECTION SURVEILLANCE PROGRAM

Maja McGuire, Sandra Callery
Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada

Issue: A push to increase quality improvement initiatives in our facility has led to the development of a new surgical site infection (SSI) surveillance program for laminectomy surgery. To facilitate buy-in from the two surgical specialties (orthopaedic and neuro surgery) that perform this surgery a number of things were done in preparation for our first face-to-face meeting.

Project: Infection Prevention and Control (IP&C) conducted crude infection data post laminectomy surgery from April 1, 2013 to March 31, 2014. The data collected consisted of total number of laminectomies performed by each service, number of spotential surgical site infections per service, patient demographics and criteria from the primary surgery. Patient cases with a possible SSI were identified through active surveillance of microbiology culture results and patient readmissions for one year post laminectomy surgery. SSIs were classified based on nationally recognized case definitions.

Results: If our overall goal of this surveillance initiative was to reduce SSIs we had to first determine baseline rates of SSIs in this surgical population. From April 1, 2013 until Feb 1, 2014 there were 247 laminectomies performed and 11 potential SSIs identified by IP&C. Over time we will be able to identify both clusters of infection and issues/interventions that may increase rates above the baseline.

Breakdown of the two different surgical patient populations showed comparable length of surgery, age of patient and American Society of Anesthesiologists (ASA) score. Challenges will be minimal loss of patients to follow up.

Next steps: Preliminary data will be presented to a multi-disciplinary group to outline the following: 1. Review SSI case definition and potential SSI’s identified. 2. Identify risk factors for infection (i.e., use of instrumentation, antibiotic timing). 3. Determine an acceptable method of post-discharge surveillance. 4. Create a working group where future discussions can be made.

EVALUATION OF A NEW C.DIFFICILE INFECTION CASE ADJUDICATION CRITERIA: EXCLUSION OF COLONIZATION IN HOSPITAL ADMITTED PATIENTS WITH POSITIVE PCR RESULTS

Salim Agnihotri, Neil Rau, Thomas Warren
Halton Healthcare Services, Oakville, ON, Canada

Objective: Prospective Evaluation of simple clinical criteria to distinguish colonized from infected C. difficile PCR-positive hospitalized patients.

Methods: Criteria were developed using a literature review and a review of suspected colonization cases observed from January 2012 to June 2012. Clostridium difficile colonization was provisionally considered to be present if two of the following three criteria were met: 1. Normal WBC. 2. Less than three loose bowel movements in 24-hour period. 3. Recent laxative use (48 hours prior to stool sample being obtained). Criteria were then applied to positive cases from July 2012 to September 2013. Provisionally colonized patients were monitored for a change in symptoms within one month of the positive PCR result.

Results: Out of 2072 stool specimens submitted to laboratory during the study period, 173 (8.4%) were tested positive by PCR. Of these 31 (17.9%) met the criteria for colonization and 142 (82.1%) were considered infections. Symptoms resolved between 0 to 5 days (mean 1.2 days) in colonized cases. Only two provisionally colonized cases out of 316 (6.5%) were later developed infection. One had persistent diarrhea, while the other was readmitted with worsening of diarrhea. For rest of the colonized patients 29/31, the criteria used remain true as they did not develop clinical infection for the duration of hospital stay or on readmission within one month following colonization.

Conclusion: This criteria correctly distinguishes C. difficile infection from colonization with 93.5% accuracy in this patient population and can serve as a good indicator to distinguish between colonization and infection when PCR test is positive.

THE “AGENT MULTIPLICATEUR”: A LINK TO BRINGING DOWN THE BARRIERS OF INFECTION PREVENTION AND CONTROL (IPAC)

Fernanda Cordeiro1, Sihana Perna1, Yves Longtin1,2, Bobby Paré1, Chantal Bellerose1, Debby Ben-David1, Pearl Orenstein1, Anne Desmarais1, Lara Maalouf1
1Montreal General Hospital, Montreal, QC, Canada, 2McGill University, Montreal, QC, Canada

Issue: In Quebec, the recent creation of an IPAC nursing specialty confirms the important role of nurses in this area. IPAC is a field that requires continuous efforts
at all times by all participants to decrease healthcare associated infections. Even the most effective IPAC program cannot replace “back to basics” prevention measures that should be practiced by all healthcare workers. A multidisciplinary committee consisting of over fifty “Agent Multiplicateurs (AM)” or champions was created at a McGill affiliated hospital to collaborate with IPAC in promoting a culture of patient safety to prevent infections.

Project: The program, a first of this magnitude in Canada, focuses on two key themes: promoting safe practice and ensuring safe patient environment. A year-long detailed action plan with three learning modules based on the theme of “IPAC back to basics:” hand hygiene, equipment cleaning and routine practices and additional precautions (AP) was created. Launched in March 2013, bimonthly courses, including one full day practicum are provided. Learning strategies include lectures, videos, handouts, toolkits, etc. Objectives, outcome and process measures, actions and evaluations are documented using an improvement charter.

Results: Ongoing commitment of the AMs is demonstrated by regular attendance at meetings. AMs developed effective signage for AP, initiated several audits, education sessions and hand hygiene promotion with their coworkers. They gained increased visibility and reported feelings of empowerment, increased awareness and heightened knowledge. Some take ownership and feel confident in responding to their coworkers about IPAC related issues. Most importantly, the IPAC nurses created a team of allies throughout the hospital.

Lesson learned: Administrative support and buy-in from affected stakeholders are critical in launching a program of this magnitude. Key elements for success include experienced and knowledgeable IPAC nurses familiar with the institution’s culture, perseverance, structure and preparedness. Social marketing skills are essential to mobilize and engage AMs to influence change.

EXHIBIT HALL FLOOR PLAN
A more hygienic approach to privacy.

The Silentia Privacy Screens were designed so that they could be cleaned immediately and regularly in a cost effective and safe manner. The broad range of heights, lengths, and colours also allow the screens to fit well into all healthcare environments.
hygie®
Fighting HAIs Together

Hygienic Covers®
Designed for the safe collection, transportation and disposal of bodily fluids. The unique super-absorbent pad included in each bag turns liquid waste into gel within seconds. Used with the Commode Chair, Hygie® Urinal Support and Hygie® Emesis Support.

Hy21® Support
Used with Hygie Hygienic Covers®, the Hy21® Bedpan Support replaces the standard and orthopedic bedpans by offering a 2-in-1 design which combines the benefits of both bedpan types. The revolutionary Hy21® technology facilitates handling and use for all patients requiring a bedpan.

Wash Gloves
Hygie® Disposable Wash Gloves are pre-moistened, no water required, with a gentle hypoallergenic cleansing lotion.
- Prevent cross contamination
- Complete bathing for bedridden patients
- Practical and effective
- Single-use

More than 65 Products

Used in more than 700 health facilities
1.866.588.2221 | www.hygie.com
2014 National Education Conference

We wish to thank our generous sponsors for their support of the 2014 IPAC Canada conference (at time of printing):

PLATINUM

- 3M
- Clorox
- Virox Technologies Inc.

GOLD

- Ecolab
- Gojo
- Vernacare

SILVER

- Webber Training

BRONZE

- CPSI/ICSP
- Sealed Air
- Dräger

CONFERENCE SPONSOR

- Deb

Join the Fastest Growing Health Authority in British Columbia.

What does Fraser Health mean to you?

Challenges and rewards.

Meet us at the 2014 National Education Conference & Trade Show

May 24-28 in Halifax at Booth 606!

Together, we create great workplaces careers.fraserhealth.ca
Sterillium® Rub Hand Antiseptic with 80% alcohol content is an effective broad spectrum antiseptic with excellent skin compatibility.

Sterillium® Rub’s balanced emollient blend leaves hands feeling soft and smooth, never greasy or sticky. It dries quickly and leaves no buildup, allowing quicker, easier gloving.

To schedule a free demonstration contact your Medline Representative, call 1-800-396-6996

Increased efficacy.
Incredible comfort.
Improved compliance.
Fragrance Free
Sterillium® Rub.
Module 1: The Chain of Infection provides an overview of the chain of infection and how breaking any link in the chain can help prevent the transmission of infectious microorganisms.

Module 2: Routine Practices introduces Routine Practices and describes a point of care risk assessment, which is central to decisions about Routine Practices and shows how a point of care risk assessment can be applied.

Module 3: Hand Hygiene and Personal Protective Equipment explains when and how hand hygiene should be done. The module also describes how best to protect yourself and the patients in your care by using Personal Protective Equipment appropriately.

Module 4: Environmental Controls describes these elements and reviews strategies to reduce healthcare associated infections that are related to cleaning equipment, environmental cleaning, waste management, Sharps Safety and more.

Module 5: Source Control & Education describes the components of Source Control and explains how strategies improve patient flow, manage visitors and promote respiratory hygiene/cough etiquette that will help reduce healthcare associated infections.

Module 6: Routine Practices Applications How does the application of Routine Practices vary according to the nature, scope and duration of contact with patients? While the principles remain the same, healthcare workers with “high”, “medium” and “low” patient contact will find that some elements are more applicable than others in their daily work.

This Infection Control Program is designed to assist Health Care Administrators in implementing Infection Prevention and Control Routine Practices for Front Line Staff.

The program will help reduce the transmission of infections within health care settings by teaching front line staff standard routine infection control practices while reducing costly training through the use of E-Learning technology. This self-paced, certificate program offers six, one hour modules that demand a minimum 75% achievement levels in all post module testing to ensure that the basic concepts are clearly understood.

- Full administration/implementation support
- New individual pricing
- New bulk enrolment pricing

IPAC Canada Launches Updated Bilingual Infection Prevention & Control Routine Practices E-Learning Program

This Infection Control Program is designed to assist Health Care Administrators in implementing Infection Prevention and Control Routine Practices for Front Line Staff.

The program will help reduce the transmission of infections within health care settings by teaching front line staff standard routine infection control practices while reducing costly training through the use of E-Learning technology. This self-paced, certificate program offers six, one hour modules that demand a minimum 75% achievement levels in all post module testing to ensure that the basic concepts are clearly understood.

- Full administration/implementation support
- New individual pricing
- New bulk enrolment pricing

(705) 325-2740 (x3368) | www.georgianct.com | www.IPAC-Canada.org
Class 1 Inc. is proud to be part of the solution as a founding member of CHAIR. To find out more about CHAIR or Class 1 Inc.'s contribution to infection reduction, visit: www.chaircanada.org and class1inc.com

80% reduction in Healthcare Acquired Infections by 2024

Be part of the solution...

Class 1 Inc. is proud to be part of the solution as a founding member of CHAIR. To find out more about CHAIR or Class 1 Inc.'s contribution to infection reduction, visit: www.chaircanada.org and class1inc.com

healtHcentric

DISCOVER MEDICAL GRADE SEATING THAT’S CHANGING THE STANDARD.

healtHcentric seating solutions are designed to meet the needs of the ever-changing healthcare industry. Our durable and impermeable IC+™ upholstery solution forms a seamless moisture-proof barrier on all our chairs. The benefits of IC+:

+ 10 year warranty against tears, cracking and punctures
+ IC+ completely seals the seat and seat pan, leaving no seams and preventing bed bugs and moisture from entering
+ Non-porous
+ PVC free vinyl alternative
+ Superior cleanability & cleaning agent tough
+ GREENGUARD® certified*

Learn more at healthcentric.com

To find out more about CHAIR or Class 1 Inc.'s contribution to infection reduction, visit: www.chaircanada.org and class1inc.com

AA_Top5Reasons_CHICA_Hpg_Sum14_1.indd 1
3/28/2014 7:33:34 PM

Return to TABLE OF CONTENTS

TOP 5 REASONS TO ENROLL IN

Competency Review

1. Affordable and easy to use.
2. Comprehensive content.
3. Anytime and anywhere access—no compromising your professional and personal commitments.
4. Earn Continuing Nursing Education (CNE) hours.
5. Complete each course self-assured and ready to prevent infections!

Visit www.apic.org/anywhere to register and view the full suite of online courses

Online Education Center

Online Education Center

Return to TABLE OF CONTENTS
Getting a Hand on Nosocomial Infections

CRITICAL AREAS

Two cornerstones to infection control and nosocomial infections (NIs) are hand hygiene and environmental surface cleaning. Due to the nature of their jobs, health care workers frequently wash their hands throughout the day and many end up suffering from dry and irritated hands. This painful irritation contributes to decreased compliance with hand hygiene policies. Dry, damaged skin can spread bacteria more easily because it flakes off, taking bacteria with it. To alleviate this irritation, health care workers should practice patting hands dry rather than rubbing as well as using soft and absorbent paper towels, such as Canadian company, Kruger Products’, superior Embassy Supreme Thru-Air Dried paper towel.

In terms of environmental cleaning, several new technologies promise to eliminate antibiotic-resistant bacteria using ultraviolet light or hydrogen-peroxide vapour, yet these expensive technologies overshadow one integral solution to antibiotic resistant bacteria – hospital cleaning staff.

IMPACTING THE BOTTOM LINE

Cleaning staff is the front-line against antibiotic-resistant bacteria, but health care budgets grow consistently tighter while demands on cleaning staff continue to mount. To support cleaning procedures, institutions should ensure cleaning staff – whether outsourced or internal – are using quality cleaning products, which contribute to reducing health care costs by minimizing the length of hospital stays, morbidity and mortality associated with avoidable NIs.

In tandem with cost control, risk management needs to consider reputational issues and patient concerns of NIs. In 2013, Joseph Brant Hospital in Burlington, Ontario paid a $9 million settlement in a class action lawsuit after the 2006/2007 Clostridium difficile infection outbreak, often cited as the worst such outbreak in Ontario, during which more than 200 patients were infected with the bacterium and 91 died. While this is a severe consequence, outbreaks may deter patients from using certain hospitals, and create challenges in attracting and retaining leading health care professionals.

VIABLE SOLUTIONS

Health care institutions can’t be expected to win this fight alone. Working with experienced partners like Kruger Products that understand the unique challenges health care institutions face will support your initiatives to improve hand hygiene and NI prevention.

To learn more about how Kruger Products can help enhance your facility’s infection prevention and control plans, visit www.krugerproducts.com/ahf or call 1-800-665-5610.

2 Zoutman, Dick, MD, FPcyC, B. Douglas Ford, MA, Elizabeth Bryce, MD, Marie Gourdeau, MD, Ginette Hébert, RN, Elizabeth Henderson, PhD, and Shirley Paton, RN, Canadian Hospital Epidemiology Committee; Canadian Nosocomial Infection Surveillance Program and Health Canada “The state of infection surveillance and control in Canadian acute care hospitals.” Am J Infect Control 2003;31:264-73.

STATE OF STATE

An increase in adherence to hand hygiene by only 20% has been shown to reduce the rate of NIs by 40%.

Hands can be the route of transmission for dangerous pathogens.

80% of hospital staff who dressed wounds infected with MRSA carried the organism on their hands for up to three hours.

60% of hospital staff, within 30 minutes of contact with patients with Clostridium difficile infection, were contaminated without even having touched the patient, from merely returning drug charts to the ends of beds.
EXHIBITORS

2015 IPAC Canada Conference, Victoria
Booth 320
Co-hosted by IPAC Canada members on Vancouver Island and IPAC British Columbia, the 2015 national Education Conference will be held at the Victoria Conference Centre-Fairmont Empress (June 14-17, 2015). For information on the 2015 conference, contact IPAC Canada at 1-866-999-7111 or info@ipac-canada.org

3M Canada
Booths 613, 615
800-364-3577
www.3M.com/ca/healthcare
3M Infection Prevention Division helps to reduce healthcare-associated infections. We are a trusted partner committed to helping hospitals reduce the risk of infections, improve patient outcomes, and control their bottom lines.

Action Janitorial Supplies Ltd.
Booth 506
902-454-0807
actionjs@eastlink.ca
www.actionjs.ca
We distribute Buckeye International cleaning chemicals and hand hygiene products. We work closely with hospitals and other facilities to develop effective cleaning programs.

AMG Medical
Booth 422
800-361-2210
www.amgmedical.com
Canadian company that provides effective, user-friendly disinfection and infection control solutions to healthcare institutions including MedPro Defense’s Nocospray and Haigh macerator technology.

Ansell
Booth 414
450-266-1850
Brigitte.ferland@ansell.com
www.ansell.com
Leader in the personal protective equipment and medical gloves markets, as well as in the sexual wellness category.

ArjoHuntleigh Canada Inc.
Booth 310
800-665-4831
info.canada@arjohuntleigh.com
www.arjohuntleigh.com
From thermal disinfection of human waste receptacles, to chemical disinfection of baths, plus disposable patient handling slings and lateral transfer devices; ArjoHuntleigh products are designed with infection control with people in mind.

Bard Canada Inc.
Booth 603
289-291-8045
sarah.taylor@crbard.com
Bard Canada offers an array of high quality urology products and will be featuring infection control catheters and complete care closed system trays at IPAC.

Canadian Agency for Drugs and Technologies in Health (CADTH)
Booth 207
866-988-1444
requests@cadth.ca
www.cadth.ca
Not-for-profit producer and broker of evidence that healthcare decision-makers rely on to inform decisions about the effectiveness of drugs and health technologies.

BE PREPARED FOR FLU SEASON...
With The PPE CADDY

With flu season upon us, we want to help you minimize contamination & eliminate the spread of germs!

The PPE CADDY:
Keeps all isolation supplies in one place
Encourages isolation compliance
Easy to implement

CLASS1 INC.
Building Better Healthcare™

How Do We Keep Engineers, Architects, and Healthcare Facility Managers Happy?
By Always Being Better.

Installation & Service of:
• Medical gas systems
• Onsite O2
• Halogenated drug recovery
• Remote monitoring systems

Find out more at www.class1inc.com or email us at info@class1inc.com
Compliance starts here.

Safer Healthcare Now! includes oral care as part of its VAP Bundle. *Do you?*

The sequential packaging of Q-Care® makes it easy to comply with your facility’s oral care protocol.

Contact your Sage sales representative today to learn how Q-Care can help your facility address VAP risk factors. Visit: www.sageproducts.com/preventinfection
Why your health care facility or corporation should consider PCS a Canadian based manufacturing corporation.

PCS is the largest CANADIAN manufacturer of Health Canada DIN registered Bleach disinfectants with a variety of concentrations suitable and in use in a number of health care facilities in Canada. PCS products are manufactured in Peterborough by Ontario taxpayers supporting Ontario’s health care system. Health care in Canada is a very small community and PCS is your local manufacturer of Health Canada approved sodium hypochlorite disinfectants.

At PCS we have both ready to use liquids and pre moistened wipers with multiple concentrations of bleach registered with Health Canada. In health care both ready to use liquid and wiper formats are appropriate for use.

At PCS we have many options that individual facilities can choose from starting with one concentration of hypochlorite for hospital wide use or combinations of programs that could include different concentrations for different departments. PCS has various options for cleaning. MicroClean all natural cleaning, ECOgent General Purpose Cleaner with targeted use of disinfectants after cleaning, alternatively PCS Microquat can be used as a cleaner disinfectant in many areas of the health care facilities.

Compatible chemistries is very important when choosing hypochlorite disinfectants. At PCS all of our recommendations include various chemistries that do not offer significant health risk when chemical residues inadvertently interact on surfaces.

PCS with our distribution partners offer staff training and assistance in selecting and use of various quality auditing processes including Glow germ marking and ATP testing of surfaces.

Kills
C. difficile
Spores

www.processcleaningsolutions.com
Toll Free: 877.745.7277
EXHIBITORS

Canadian Association of Environmental Management Booth 209
519-824-1010
sophkeit@homeword.com
www.caenvironman.com
National association representing the environmental (cleaning) services industry.

Canadian Association of Medical Device Reprocessing Table near 211
709-752-4436
merlee.rockway@easternhealth.ca
www.camdr.ca
New national organization established to elevate the quality and standards of reprocessing nationwide. Its goal is to work with key stakeholders to enhance knowledge exchange and ultimately improve patient care.

Canadian Journal of Infection Control Table near 712

Canadian Patient Safety Institute Booth 312
780-409-8090
info@cpsi-icsp.ca
www.patientsafetyinstitute.ca
Not-for-profit organization for raising awareness and facilitating transformation in patient safety. Closing the gap between the healthcare we have and the healthcare we deserve.

CaridoMed Booth 604

Certification Board of Infection Control & Epidemiology Booth 213
414-276-3349
lkeller@cbic.org
www.cbic.org
Provides direction for and administers the certification process for professionals in infection control and applied epidemiology.

CHAIR Canada
519-749-5267
info@chaircanada.org
www.chaircanada.org
Canadian coalition of industry and healthcare professionals working to achieve an 80% reduction in HAIs through engineered solutions by 2024.

CKM Healthcare
Booth 418
519-749-5267
info@chaircanada.org
www.chaircanada.org
Canadian coalition of industry and healthcare professionals working to achieve an 80% reduction in HAIs through engineered solutions by 2024.

Class 1 Inc. Booth 311
519-650-2355
info@class1inc.com
www.class1inc.com
A leading Canadian manufacturer of medical air systems, medical gas pipeline components, medical headwall systems and Canada’s exclusive source of Sanuvox Healthcare UV Sterilization Systems.

Clorox Professional Products Co. Booths 501, 503, 600, 602
866-789-4973
healthcare@clorox.com
www.cloroxhealthcare.com
Clorox Healthcare™ markets some of the most trusted healthcare brands in North America. With a portfolio that includes bleach, hydrogen peroxide and quaternary products, we offer many solutions that reinforce our commitment to helping healthcare professionals stop the spread of infections.

Cornerstone Medical Booth 304
905-945-2522
www.cornerstone-medical.com
Provider of Silentia Privacy Screens, an alternative and innovative product that deals with today’s issues and challenges relating to infection control and prevention.

Crane Wood Stookey
Table near 511
902-240-5904
cranestookey.com
Cran helps executives accomplish two key goals: better performance and deeper commitment for your people; greater mastery of your personal mental performance as a leader.

CSA Group Booth 211
416-747-4005
cecilia.vega@csagroup.org
www.csa.ca
Not-for-profit association dedicated to safety, social good and sustainability. Standards development, training and advisory solutions, global testing and certification services across key business areas.

Daniels Sharpsmart Canada Ltd.
Booth 504

DebMed Booths 607, 609, 611, 706, 708, 710
888-332-7627
dgreen@debcanada.com
www.debmed.com
Offering the most comprehensive hand hygiene solution, including new electronic compliance monitoring, specialized point-of-care dispensing and a full line of products specifically designed for healthcare.

Diversey Care, a division of Sealed Air Corporation
Booths 511, 610
905-829-1200
linda.haynes@sealedair.com
www.diersey.com
Diversey Care, a division of Sealed Air, is a global leader in hygiene solutions. Our mission is to help customers protect and care for their people, our planet and our communities.

Draeger Medical Booth 605
905-763-3702
laura.norris@draeger.com
www.draeger.com
Dräger develops innovative equipment and solutions that people the world over trust. Whether for use in the OR, Neonatal, Dräger products protect, support and save lives.

E.I. DuPont Canada Co.
Booth 420
416-427-4823
nancy.wiskel@dupont.com
www.corian.na.dupont.com
Manufacturer of DuPont™ Corian® the ideal surface play a critical role in helping you create sager healthcare environments.

Ecolab Booths 303, 305
800-268-0465
www.ecolab.com/healthcare
Partnering with healthcare customers to deliver foundational infection prevention solutions that help increase efficiency, improve outcomes and reduce the risk of HAIs.

Emerald Health Information Systems Ltd.
Booth 608
613-599-8178 ext. 200
pbair@emeraldhis.com
www.emeraldhis.com
A leader in Canadian healthcare decision support tools, we provide sophisticated, browser accessible Infection Control and Surveillance (ICS) software for real time analytics, reporting and risk management.

Fraser Health Authority Booth 606
604-953-5115
recruitment@fraserhealth.ca
careers.fraserhealth.ca
Located in the Metro Vancouver and Fraser Valley region of BC, has a variety of infection prevention and control practitioner career opportunities.
The Hill-Rom® Hand Hygiene Compliance Solution

Badge-based monitoring of hand-washing events

Easy to implement: Caregivers simply wear a badge and go about their normal hand-hygiene activities

Easy to install: Cable-free system devices with minimal disruption to rooms and/or unit

Easy to report: Visibility to real-time hand-hygiene event data at the individual, unit or hospital level to identify patterns in hand-hygiene behavior and to facilitate continuous improvement

©2014 Hill-Rom Services, Inc. ALL RIGHTS RESERVED.

www.hill-rom.ca
The benefits and risks of vaccine-preventable diseases in Canada by immunization.

Our goal: contribute to the immunization of populations.

immunize@cpha.ca

613-725-3769

Immunize Canada
Booth 215

613-725-3769

immunize@cpha.ca

immunize.ca

Our goal: contribute to the control/elimination/eradication of vaccine-preventable diseases in Canada by increasing awareness of the benefits and risks of immunization for all ages.

Imperial Surgical Ltd.
Booth 601
514-631-7988
kburns@surgmed.com
www.surgmed.com

Kleanik™ is a revolutionary new automated sink disinfection system that works continuously to prevent the transmission of deadly bacteria that can cause serious and fatal infections.

IPAC Canada
Booth 318

Canada’s professional association for infection prevention and control in all healthcare settings. Contact 1-866-999-7111 or info@ipac-canada.org
www.ipac-canada.org

IPAC Distance Education
Booth 217

IPAC Canada sponsors a six-module e-learning course for IPCs and others entering the field of infection prevention and control. For information contact basicde@ipac-canada.org

IPAC Nova Scotia
Booths 314, 316

IPAC Nova Scotia is honored to be the host Chapter for the 2014 IPAC Canada National Conference in Halifax. Drop by to learn about IPAC NS, visit the silent auction to purchase a truly Maritime item to take home.

Kontrol Kube
by Fiberlock Technologies
Booth 309
800-342-3755
info@fiberlock.com
www.fiberlock.com

Mobile containment units designed to be set up quickly and easily to establish a temporary negative pressure environment.

MaxAir Systems
Booth 507
800-443-3842
kdonan@bmdi.com
www.maxair-systems.com

Leader in developing advanced PPE for use in healthcare. The MAXAIR CAPR System provides unique advantages in user comfort and convenience, and overall affordability while optimizing respiratory and contact protection for healthcare workers.

Medela Canada
Booth 416
800-435-8316
regine.lalancette@medela.ca
www.medela.ca

Global leader in producing the most technologically advanced medical vacuum solutions for the healthcare industry for more than 50 years.

Medic Acces
Booth 619
877-782-3017
info@medicacces.com
www.medicacces.com

Designer and manufacturer of PPE dispensing systems. New! Designer and manufacturer of communication IPC systems.

Medical Mart
Booths 306, 308
905-624-6200
marketing@medimart.com
www.medimart.com

Medical supplies distributor serving healthcare markets across Canada offering next-day service, online ordering and over 80,000 products.

Medline Canada
Booths 500, 502
905-465-8800
jcoles@medline.com
www.medline.ca

Our mission is to provide quality medical products with superior value to healthcare providers and end users, improving patient care and the quality of people’s lives.

MIP Inc.
Booth 307
514-356-1224
info@mipinc.com
www.mipinc.com

Global manufacturer and distributor of reusable healthcare textiles and related products such as bed linens, underpads, Swift Patient repositioners, clothing protectors, Revolution Linen System, as well as other cost-effective textile solutions.

Olympus Canada Inc.
Booth 508
289-269-0100
www.olympuscanada.com

Olympus develops leading edge technology for healthcare professionals that help improve outcomes and enhance quality of life for patients.

Process Cleaning Solutions
Booth 720
877-745-7277
processcleaningsolutions.com

Public Health Agency of Canada
Booth 219
613-954-8662
www.phac-aspc.gc.ca

Promotes and protects the health of Canadians through leadership, partnership, innovation and action in public health.

Public Health Ontario
Booth 317
647-260-7536
www.publichealthontario.ca

Crown corporation dedicated to protecting and promoting the health of Ontarians, reducing health inequalities and supporting public health professionals.

RL Solutions
Booth 700
416-410-8456
sales@rlsolutions.com
www.rlsolutions.com

RL Infection helps hospitals better detect, manage and control infections.
EXHIBITORS

Rubbermaid Commercial Products
Booth 716

Sage Products Inc.
Booth 712
800-323-2220
customerservice@sageproducts.com
www.sageproducts.com/Canada

Our core belief is prevention. Our products are designed to help reduce risk factors for VAP and bacteria on the skin that can cause infection.

SciCan Medical
Booth 323
416-445-1600
www.scican.com

We supply a full spectrum of infection control products, services, training, and consultation which can be applied to the largest hospital or smallest clinic. Some products include bed pan washer disinfectors and sterilizers.

Showcare
Booths 203, 205

Southmedic Inc.
Booth 617
705-720-1902
jm cunningham@southmedic.com
www.southmedic.com

Steriliz LLC R-D Rapid Disinfector UVC, Chrisal Canada, Southmedic Canada, Boss Clearflush, Golden Environmental.

Steris Canada Inc.
Booth 302
800-661-3937
www.steris.com
With a unique combination of infection protection and contamination control products and services, STERIS can help you gain productivity, lower costs, and protect staff and patients.

Surface Medical Inc.
Booth 722
403-589-7642
info@surfacemedical.ca
www.cleanchip.ca

Inspired by a Canadian nurse, CleanPatch is a proven medical surface repair patch for damaged mattresses. Come see our new sizes and much more!

The Stevens Co. Ltd.
Booth 404
905-791-8600
stevens@stevens.ca
www.stevens.ca
Leading Canadian supplier to hospitals, physicians, and long term care facilities for over 135 years with six distribution centres across Canada.

Vernacare Canada Inc.
Booths 316, 415
416-661-5552
michelle_lawrence@vernacare.com
www.vernacare.com
Vernacare is an established world leader providing environmentally responsible solutions for human waste disposal that help improve infection control.

Vileda Professional
Booth 714
669-9949
lakis.faragitakis@fhp-ww.com
vileda-professional.com
Vileda Professional offers cleaning solutions and innovative systems for professional users. With over 30 years in the business we know what needs professional users in different environments are looking for, and we offer solutions that help you clean faster, more effective and to lower total costs.

Virox Technologies Inc.
Booths 401, 403, 405, 407, 409, 411
905-813-0110
www.virox.com
Our mission is to equip the entire spectrum of global markets that are concerned with infection control with state-of-the-art antimicrobial technology accelerated hydrogen peroxide.

Webber Training, Inc.
Booth 315
800-363-5376
paul@webbertraining.com
www.webbertraining.com
Teleclass Education for infection prevention and control professionals worldwide. Infection prevention and control outreach in developing nations.

Welch Allyn
Booth 509
800-561-8797
jennifer.jones@welchallyn.com
www.welchallyn.ca
Welch Allyn offers a range of digital and EMR-interfaced diagnostic solutions and physical diagnosis instruments that help reduce risk, improve patient outcomes and enhance clinical workflow.

Wood Wyant
Booth 510
819-758-2889
melanie.moreau@sanimarc.com
Find out today how you can improve TB screening by switching to QuantiFERON®-TB Gold (QFT®):

QuantiFERON®-TB Gold (QFT®):
Find out today how you can improve TB screening by switching to QuantiFERON®-TB Gold (QFT®):

QuantiFERON®-TB Gold (QFT®):
Find out today how you can improve TB screening by switching to QuantiFERON®-TB Gold (QFT®):
QuantiFERON®-TB Gold

Find out today how you can improve TB screening by switching to QuantiFERON-TB Gold (QFT®):

- Single visit (1)
- Unaffected by BCG vaccination (1–3)
- Highly accurate (1–4)

Contact us by email at customercare-us@qiagen.com or visit www.QuantiFERON.com.

QuantiFERON-TB Gold (QFT) is CE marked. QFT is approved by the US FDA.

QFT is approved by the FDA as an in vitro diagnostic aid for detection of Mycobacterium tuberculosis infection. It uses a peptide cocktail simulating ESAT-6, CFP-10, and TB7.7(p4) proteins to stimulate cells in heparinized whole blood. Detection of IFN-γ by ELISA is used to identify in vitro responses to these peptide antigens that are associated with M. tuberculosis infection. FDA approval notes that QFT is an indirect test for M. tuberculosis infection (including disease) and is intended for use in conjunction with risk assessment, radiography, and other medical and diagnostic evaluations. QFT Package Inserts, available in up to 25 different languages, as well as up-to-date licensing information and product-specific disclaimers can be found at www.QuantiFERON.com.

Trademark: QIAGEN®, QFT®, QuantiFERON® (QIAGEN Group). Qm316352068 07/2013 © 2013 QIAGEN, all rights reserved.
Rise Above the Curve

Introducing the new AMSCO® V-PRO® maX Low Temperature Sterilization System — the next innovation in surgical flexible endoscope processing from the pioneers of low temperature sterilization.

The V-PRO maX is above the curve in:

Versatility
- Process single or dual channel surgical flexible endoscopes¹
- 35-minute Flexible Cycle, a 28-minute Non Lumen Cycle and a 55-minute Lumen Cycle

Productivity
- Process 2x more lumened devices per load²
- Process two surgical flexible endoscopes or one surgical flexible endoscope and non lumened load up to 24 pounds
- Low sensitivity to moisture³ helps minimizes aborted cycles

Contact your STERIS representative today or call 1.800.661.3937.

¹ Single channel lumen scopes up to 1050mm. Dual channel scopes up to 998/850mm.
² As of April 2012, STERRAD® 100NX and NX are cleared to process 10 stainless steel lumens per load. V-PRO maX is cleared to process 20 stainless steel lumens per load.
³ Compared to the STERRAD 100NX.

STERRAD is a registered trademark of Advanced Sterilization Products, a Johnson and Johnson Company.

©2012 STERIS Corporation. All rights reserved.
Clinical Editor appointed

The Board of Directors of IPAC Canada is pleased to announce the appointment of Chingiz Amirov, MPH, CIC to the position of Clinical Editor of the Canadian Journal of Infection Control. Officially taking office on September 1, 2014, Chingiz will work with Pat Piaskowski, the current Clinical Editor, in preparation for the publication of the spring and summer 2014 journals.

Chingiz is Director of Infection Prevention and Control at Baycrest Health Sciences in Toronto. He holds a degree in Preventive Medicine from his home country of Azerbaijan and a Master’s degree in Public Health from Emory University in Atlanta, Georgia. His past appointments include a Medical Officer position at the International Committee of the Red Cross (Geneva-based humanitarian agency), Guest-Researcher at the Centers for Disease Control and Prevention in Atlanta, and Research Coordinator at the Emory University School of Medicine. He has had a dynamic and progressive 15-year career with outstanding performance and innovative experience in research, prevention, and control of infectious diseases and healthcare-associated infections.

Chingiz’s strong analytical and research aptitudes with a solid academic background and hands-on experience in infection prevention and control and hospital epidemiology will be assets to him in his newest role.

He is a member of IPAC GTA (Greater Toronto Area) chapter and represents Long Term Care on the 2015 Scientific Program Committee.

LEARN MORE. TALK TO YOUR DOCTOR, NURSE, PHARMACIST OR LOCAL PUBLIC HEALTH OFFICE TODAY, OR VISIT: IMMUNIZE.CA

Affinity3S collects and organizes valuable surgical site surveillance information.

Automate follow-up with your patients.

To learn more visit www.seekersolutions.com

Return to TABLE OF CONTENTS
Only Metrex™ protects you and your patients across the entire Infection Prevention Circle of Care™.

Trust the company thousands of healthcare facilities use every day...
Trust Metrex for all your surface disinfection needs.

At Metrex, we strive to continuously improve our products. CaviCide1 now kills Norovirus in just 1 minute and with only 1 step.

Metrex has been Protecting People across healthcare for over 25 years.

©2014 Metrex Research. All Rights Reserved.
Metrex, CaviWipes1, CaviCide1, EmPower, VioNex, VioNexus, Googles and MetriCide OPA Plus are trademarks of Metrex Research Corporation.
SLATE OF CANDIDATES FOR ELECTION TO THE IPAC CANADA BOARD OF DIRECTORS

The Nominating Committee of the Board of Directors of IPAC Canada is charged with the responsibility of ensuring continuity by nominating a slate of directors for positions open in 2014 (Policy 12.10). Additionally, nominations for board positions are welcomed from members of IPAC Canada. Serving on the board of IPAC Canada is an excellent way to participate at the national level. This offers the opportunity to meet a wide range of IPAC Canada members, network with allied professional groups, and work with other motivated and experienced board members.

Because of changes to election laws as prescribed in the current by-laws, the procedure for election of directors and officers has changed. Please also note that, because of bylaw changes to terms of office, the current president will hold office until the 2015 AGM and the current president-elect will become president at the 2015 AGM. The election for a president-elect will take place every two years, starting in 2015.

Timelines for election of officers and directors:
- December 16, 2013: Announcement of the Nominating Committee slate of directors.
- February 14, 2014: Deadline for additional nominations from membership.
- February 28, 2014: Announcement of final slate of candidates for election at 2014 AGM.
- May 28, 2014: Elections to be held at the Annual General Membership Meeting, Halifax.

There being no additional nominations as of the deadline date of February 14, 2014, the Nominating Committee of the board of directors of Infection Prevention and Control Canada (IPAC Canada) has put forth the following candidates for positions open as of May 28, 2014. Additional nominations from the membership of IPAC Canada will be accepted at the Annual General Meeting (May 28, 2014). Position descriptions (Section 2 Board of Directors, Policy) may be obtained from the Membership Services Office (info@ipac-canada.org).

- Secretary (three-year term): Marilyn Weinmaster, RN, BScN, CIC; Regina, SK
- Director (Education background) (three-year term): Barbara Catt, RN, BScN, MEd, CIC; Toronto, ON
- Director (Experienced ICP) (three-year term): Ramona Rodrigues, RN, BSc, MSc(A), CIC, CNS; Montréal, Québec

CANDIDATE PROFILES

Marilyn Weinmaster, RN, BScN, CIC is a Regional Long Term Care Infection Prevention and Control Professional (ICP) in the Regina Qu’Appelle Health Region. During her career, she has been a staff nurse, care coordinator, a manager in long term care and rehabilitation (adult and paediatric) and an ICP in long term care, complex care and rehab. She has been an ICP for 10 years. As an IPAC Canada member, she has chaired the Membership Core Committee, and was chair of the Long Term Care Interest Group. She has represented long term care on the 2011 and 2012 Scientific Program Committees, participated on the Routine Practices E-Learning Modules Working Group for development and review of the e-learning tool, and has participated as a pilot test site for RPAP tools. She is a member of the Competencies Review for Healthcare Workers Review Committee. Marilyn was president of IPAC SASKPIC for three terms and has chaired the chapter’s annual education planning committee. Marilyn held the position of IPAC Canada Secretary/Membership Director for one term and is seeking re-election as secretary of the board.

Philosophy: The past three years I had the privilege of serving on the board as the Secretary/Membership Director. My rationale for why I chose to let my name stand for a second term is the same today as it was in 2010. Through IPAC Canada I have built relationships with members from a variety of disciplines and settings. Their passion, dedication and knowledge in promoting infection prevention and control in a challenging and dynamic health care system has strengthened my desire to serve a second term. While the membership director position has been eliminated, I look forward to serving on the board as secretary. I am committed to supporting the board as it transitions to a policy board and move the organization and its members forward.

Barbara Catt, RN, BScN, CIC, MEd has worked in the field of infection prevention and control for many years. Her work experiences include emergency room, operating room, ICU, medical-surgical, long-term care, and professor of nursing at college and university levels. She has worked in a variety of healthcare settings including public health, small community hospital and large tertiary healthcare centre. Barbara is a registered nurse and holds a Master in Education where her research was focused on principles of adult learners. She has been involved in research and publications regarding disease transmission and education such as core competencies. Currently Barbara is the coordinator of the IPAC Canada Endorsed Infection Control Course offered at Centennial College and is a lecturer for the Prevention of Catheter-Related Blood Stream Infections, Adult Education and Ambulatory Care Settings modules. In 2008, she developed an Infection Control Course for Estheticians at Centennial College and continues to be the...
Exam Gloves

Proud Partners Of

www.stevens.ca

HALIFAX 800-565-0765
MONTREAL 855-660-7750
TORONTO 800-268-0184
WINNIPEG 800-665-1229
CALGARY 800-665-0368
VANCOUVER 800-565-8444
ramona Rodrigues, RN, BSc, MSc(A), CIC, CNS is manager for the Infection Prevention and Control Service of the McGill University Health Centre (MUHC) in Montreal, Quebec. She manages a team of nine infection control professionals and three support staff for four adult sites: the Montreal General, the Royal Victoria, the Montreal Neurological Institute and the Chest Hospital in Montreal. Ramona has been a strong supporter for ensuring the minimum number of resources to practice infection prevention and control. She was a member of the Canadian Infection Prevention and Control Alliance group in 1997 and 1998 that published ratios for the number of professionals per acute care beds. In Quebec, as a member of the Comité sur les infections nosocomiales du Québec, she supported the regulation to enforce Health Care Facilities to support the ratios. In addition, she worked collaboratively with colleagues in Quebec to have the specialization recognised by the l’Office des professions du Québec as a clinical nurse specialist in infection prevention and control. Ramona is an active member of several provincial expert committees. She is an expert consultant for the Comité sur les infections nosocomiales du Québec (CINQ), an advisory committee to the Ministry of Health of Quebec; a member of Surveillance provinciale des infections nosocomial (SPIN); a consultant to the Quebec Provincial Committee on Environmental Hygiene and an active member of several regional infection control working groups. Ramona has been a speaker at several conferences, posted abstracts and taught infection control to varied professionals. In 2011, she was asked to review the infection control program at the Chest Diseases Hospital (CDH) in Kuwait City, Kuwait, United Arab Emirates.

Philosophy: It gives me pleasure working for organizations that recognize and promote best practice in the field that is dear to me. Advancing this passion nationally and internationally is what IPAC Canada supports. Being leaders in the field, pursing values of professional integrity, critical thinking, accessibility, responsiveness, innovation, diversity, advocacy, and excellence in all of its activities are value statements in keeping with my personnel career achievements. I have had the opportunity throughout my career locally, nationally and internationally to promote excellence and best practice through development of standards, development and recognition of educational programs for infection prevention and control professionals including front line staff, advocating for recognition of the expertise in the field and promoting consumer awareness for infection prevention and control. I feel that I can help IPAC Canada to continue its legacy of being innovative, responsive and supportive to the memberships’ needs and in building a credible organization that is recognized worldwide. Empowering and facilitating the membership with assets to help challenge processes, stakeholders and consumers in the pursuit for best wellness and safety practice in infection prevention and control is far-reaching. I trust it is my raison d’être to contribute in making that difference.

Philosophy: I think of a quote by Robert E. Lee who once stated: “The education of man is never completed until he dies,” which supports my belief that we are all lifelong learners. As an educator and as a professional in infection prevention and control (IP&C), teaching and learning becomes a daily part of our roles and responsibilities. Educators need to think outside of the box and be flexible! Evaluate what has worked in the past which may not work in today’s situations. Times have changed and it is with these day-to-day challenges and opportunities to which we need to capitalize on in order to be successful in change. The change comes not only with knowledge and understanding but also from our passion. The bar needs to be raised and our expectations need to be higher!
CIC Graduates

New and recertified CICs from a variety of healthcare settings have spent hours studying, digesting facts, and reading current literature. This information and life experience, along with successful completion of the CIC® examination, ensure the infection prevention and control professional deserves to place a CIC® after their name.

Congratulations to the following May-October 2013 graduates.

New

Linda Borycheski, MLT, CIC..................................... Niagara Falls, ON
Steven L. Chan, CIC ... Lethbridge, AB
Susan L. Day, BSc, RN, CIC Cavan, ON
Carolyn J. Doroshuk, RN, CIC Edmonton, AB
Debora Giese, RN, CIC, B.Sc. Terrace, BC
Rosemarie Irene Howie, PhD, CIC London, ON
Catherine M. Kerr, MSc, CIC Peterborough, ON
Bridget S. Maxwell, BN, RN, CIC............................ Halifax, NS
Devon Metcalf, CIC ... Guelph, ON
Janine R. Moen, RN, BScN, CIC Grande Prairie, AB
Karen R. Pardy, BN, RN, CIC Yellowknife, NT
Michelle K. Ramirez, HBsc, CIC Guelph, ON
Anuradha Rebapragada, PhD, CIC Toronto, ON
Rachael L. Sawicki, CIC ... Brampton, ON
Dori L. Taylor, RN, CIC Varna, ON
Kimberly L. Wray, HBScN, RN, CIC....................... Brantford, ON

Renewing

Donna Baker, CIC.. Orleans, ON
Joann Stella Beckstead, CIC Alexandria, ON
Laurie D. Boyer, CIC .. North Bay, ON
Maureen Buchanan-Chell, RN, CIC Edmonton, AB
Gwen M. Cerkowniak, RN, BScN, CIC Saskatoon, SK
Sharon M. Connell, RN, CIC Little Britain, ON
Edwige D. De Souza, CIC Hamilton, ON
Carla Feltrin, MSc, RN, CNCC(C), CIC Niagara Falls, ON
Kimberly Anne Leslie, CIC Kamloops, BC
Nadine M. Mazinke, RN, BSN, CIC Regina, SK
Evelyn L. Nicol, CIC ... Nelson, BC
Heidi Pitfield, CIC ... Barrie, ON
Joy E. Pyett, CIC.. Coldstream, BC
Stefanie C. Ralph, CIC ... Brantford, ON
Catherine I. Richardson, CIC Ottawa, ON
Ramona Rodrigues, MSc(A), CIC Kirkland, QC
Lucia Elisabeta Salagean, CIC Mississauga, ON
Lydia M. Salvino, CIC ... Guelph, ON
Helen Catherine Shaw, CIC Sarnia, ON
Sharon Marie Wilson, RN, BScN, CIC Edmonton, AB

Industry support

The chapters of IPAC Canada provide regional education and networking to their members. Many of their programs would not be possible without the support of industry. IPAC Canada acknowledges and thanks the many sponsors who have enhanced chapters’ ability to provide quality programming. Some of the 2013 chapter sponsors are highlighted here:

Chapter: IPAC Simcoe-Muskoka
- NanoShield Environmental Solutions
- Ontario Ministry of Labour (government)
- Pinchin Environmental Ltd
- Simcoe Muskoka District Health Unit (government)
- Public Health Ontario – North Simcoe Muskoka
- Infection Control Network (government)

Chapter: IPAC Southern Alberta
- Deb Canada
- 3M
- Virox
- Wood Wyant
- Stevens Co. Meiko
- Clorox Canada
- Ansell
- Surface Medical Inc. – CleanPatch
- AMG Medical
- Gojo – Purell
- Stericycle

Chapter: IPAC Eastern Ontario
- Ecolab
- Webber Training

Chapter: IPAC Ottawa Region
- Diversey

Chapter: IPAC Central South Ontario
- PHO-CSICN
- PHO-CRICN
- SteriPro

Chapter: IPAC Northern Alberta
- Virox

Chapter: IPAC Greater Toronto Area (GTA)
- GOJO
- ECOLAB
- VIROX

Chapter: IPAC British Columbia
- Bowers Medical (Moira Walker Award)
- Sage
- Southmedic
- Virox

Significant support has been provided by many companies and agencies not listed above.

To all our industry colleagues, we give our sincerest thanks.
Disposable Solutions

Our disposable solution for your clinical areas

In the clinical environment where patient safety is your first priority, the Dräger disposable solutions can support you in the prevention of potential cross contamination with our high quality disposable products. We provide functionality and quality without compromise.

TO FIND OUT MORE, VISIT: WWW.DRAEGER.COM/DISPOSABLES

Dräger. Technology for Life®
NOT ONLY DOES IT FEEL LIKE A SECOND SKIN
IT HAS ITS OWN IMMUNE SYSTEM

KILLS >99% OF
A HEPATITIS C VIRUS SURROGATE

KILLS 99.9% OF
HIV-1 STRAIN Mn

KILLS BETWEEN 99% AND >99.999%
OF 6 COMMON NOSOCOMIAL BACTERIA

GAMMEX® NON-LATEX
ANTIMICROBIAL SURGICAL GLOVES

Learn more about a new level of protection.
Visit www.ansellhealthcare.com/gammex
It was a pleasure to have the opportunity to present at the APIC National conference held in Florida in June 2013 and again to the chapter members of IPAC CSO. The professional and financial support of the chapter and my employer were much appreciated.

The presentation was a case study review of infections with *Mycobacterium fortuitum* from implantable venous access devices (IVAD) in the oncology population. A multifaceted investigation which included a review of both community and hospital procedures was carried out. This investigation examined insertion, access and maintenance of these devices. *M. fortuitum* is a nontuberculous mycobacterium commonly found in water and soil but rarely causes infections.

Although a point source during the investigation was not found the process review was valuable.

Lessons learned:
• The investigation of sentinel events, such as rare infections, provides an opportunity to review and improve infection control practices within various healthcare settings.
• A collaborative approach to the treatment of patients receiving care in various areas optimizes patient safety.
• Case study presentations increase staff awareness and knowledge of the subject matter.
• Opportunity for infection control professionals to investigate and then present findings increases professional development.

Bring in a new member
Win a complimentary 2014-2015 membership

Membership has its benefits. The IPAC Canada website (www.ipac-canada.org) has so much information on the benefits of being a member. The member resource guide for finding other IPAC Canada members, links to infection control sites, audit tools … the list is extensive. Tell another infection prevention and control professional (ICP), tell an ID physician, tell your Medical Laboratory Technologist, tell Environmental Services, tell EMS, tell your designate, and tell your director about the benefits of joining our national organization.

If that person joins IPAC by May 1, 2014, both you and the new IPAC Canada member will be eligible to win a complimentary 2014-2015 membership (value $202). You are eligible for the draw with every new IPAC Canada member that you get to sign up. Should the winning members have already paid their 2014-2015 membership, a refund will be made to the person or the institution which has paid the fee.

Send in this form no later than May 1, 2014. An announcement of the winners of this offer will be made at the 2014 conference. Membership applications can be found at http://www.ipac-canada.org/about_join.php.

<table>
<thead>
<tr>
<th>New member name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Email address</td>
<td>E-mail address</td>
</tr>
<tr>
<td>Sponsoring member</td>
<td>Email address</td>
</tr>
</tbody>
</table>

Send this form by fax or email to:
IPAC Canada Membership Services Office | info@ipac-canada.org | Fax: 204-895-9595
This journal would not be possible without the advertising support of the following companies and organizations. Please think of them when you require a product or service. You can also access the electronic version at www.ipac-canada.org.

<table>
<thead>
<tr>
<th>Company</th>
<th>Page</th>
<th>Phone</th>
<th>Web Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMG Medical Inc</td>
<td>2/BC</td>
<td>(800) 361-2210</td>
<td>www.medprodefense.com</td>
</tr>
<tr>
<td>Ansell Healthcare Canada</td>
<td>82</td>
<td>(800) 363-8340</td>
<td>www.ansellhealthcare.com</td>
</tr>
<tr>
<td>Association for Professionals in Infection Control & Epidemiology, Inc.</td>
<td>64</td>
<td>(202) 789-1890</td>
<td>www.apc.org</td>
</tr>
<tr>
<td>Bio-Medical Devices Intl</td>
<td>75</td>
<td>(800) 443-3842</td>
<td>www.maxair-systems.com</td>
</tr>
<tr>
<td>Class 1 Inc</td>
<td>58,64</td>
<td>(800) 242-9723</td>
<td>www.class1inc.com</td>
</tr>
<tr>
<td>Centennial College</td>
<td>79</td>
<td>(416) 289-5000</td>
<td>www.centennialcollege.ca</td>
</tr>
<tr>
<td>Cornerstone Medical</td>
<td>59</td>
<td>(800) 652-3895</td>
<td>www.cornerstone-medical.com</td>
</tr>
<tr>
<td>CSA Group</td>
<td>84</td>
<td>(877) 223-8480</td>
<td>www.shopcsa.ca</td>
</tr>
<tr>
<td>DebMed</td>
<td>26</td>
<td>(866) 783-0422</td>
<td>www.debmed.com</td>
</tr>
<tr>
<td>Diversey, Inc</td>
<td>22</td>
<td>(800) 558-2332</td>
<td>www.diversey.com</td>
</tr>
<tr>
<td>Draeger Medical Canada Inc</td>
<td>81</td>
<td>(866) 343-2273</td>
<td>www.draeger.com/disposables</td>
</tr>
<tr>
<td>ECOLAB Healthcare</td>
<td>24</td>
<td>(866) 352-5326</td>
<td>www.ecolab.com/healthcare</td>
</tr>
<tr>
<td>Emerald Health Information Systems Ltd</td>
<td>24</td>
<td>(613) 599-8178</td>
<td>www.emeraldhs.com</td>
</tr>
<tr>
<td>Fraser Health</td>
<td>61</td>
<td>(866) 837-7099</td>
<td>careers.fraserhealth.ca</td>
</tr>
<tr>
<td>GOJO Canada, Inc</td>
<td>29</td>
<td>(800) 321-9647</td>
<td>www.GOJOCanada.ca</td>
</tr>
<tr>
<td>healthcentric</td>
<td>64</td>
<td>(866) 438-3746</td>
<td>www.healthcentric.com</td>
</tr>
<tr>
<td>Hill-Rom Canada</td>
<td>70</td>
<td>(800) 267-2337</td>
<td>www.hill-rom.ca</td>
</tr>
<tr>
<td>Hygie Canada Inc</td>
<td>66</td>
<td>(866) 388-2221</td>
<td>www.hygie.com</td>
</tr>
<tr>
<td>Hygiene Performance Solutions</td>
<td>8</td>
<td>(800) 361-8749</td>
<td>www.hygieneperformancesolutions.com</td>
</tr>
<tr>
<td>Kruger Products</td>
<td>65</td>
<td>(800) 665-5610</td>
<td>www.krugerproducts.com affiliates</td>
</tr>
<tr>
<td>Medline Canada Corporation</td>
<td>62</td>
<td>(800) 396-6996</td>
<td>www.medline.ca</td>
</tr>
<tr>
<td>Metrex Corp.</td>
<td>76</td>
<td>(800) 841-1428</td>
<td>www.metrex.com</td>
</tr>
<tr>
<td>MIP Inc.</td>
<td>58</td>
<td>(800) 361-4964</td>
<td>www.mipinc.com</td>
</tr>
<tr>
<td>Process Cleaning Solutions</td>
<td>68</td>
<td>(877) 745-7277</td>
<td>www.processcleaningsolutions.com</td>
</tr>
<tr>
<td>QIAGEN Inc.</td>
<td>73</td>
<td>(661) 775-7480</td>
<td>www.QuantFERON.com</td>
</tr>
<tr>
<td>Retractable Technologies, Inc</td>
<td>6</td>
<td>(888) 703-1010</td>
<td>www.vanishpoint.com</td>
</tr>
<tr>
<td>Sage Products Inc</td>
<td>67</td>
<td>(800) 323-2220</td>
<td>www.sageproducts.com/canada</td>
</tr>
<tr>
<td>STERIS Canada Inc</td>
<td>74</td>
<td>(800) 661-3937</td>
<td>www.steris.com</td>
</tr>
<tr>
<td>The Clorox Company of Canada Ltd.</td>
<td>4</td>
<td>(866) 789-4973</td>
<td>www.cloroxprofessional.ca</td>
</tr>
<tr>
<td>the Stevens Company Limited</td>
<td>25/78</td>
<td>(800) 268-0184</td>
<td>www.stevens.ca</td>
</tr>
<tr>
<td>Vernacare Canada Inc</td>
<td>20</td>
<td>(800) 268-2422</td>
<td>www.vernacare.com</td>
</tr>
<tr>
<td>Virox Technologies Inc</td>
<td>IFC</td>
<td>(800) 387-7578</td>
<td>www.virox.com</td>
</tr>
</tbody>
</table>

NEW EDITION NOW AVAILABLE

PLUME SCAVENGING STANDARD

Surgical plume can pose a real health & safety threat to health care workers. It can be found in traditional surgical environments, dental offices, veterinary facilities, cosmetic facilities and even academic settings. Biological agents have been found in laser plume; those exposed can be at risk for contracting associated infections.

The second edition of **2305.13 – Plume Scavenging in Surgical, Diagnostic, Therapeutic and Aesthetic Settings** contains key updates that help ensure you are following current best practices.

Shop.csa.ca | (855) 635-9539
You may already know that Haigh® macerators represent a simple yet reliable way to reduce the handling of human waste. In fact, if your facility uses macerators, chances are they were designed and manufactured by Haigh® Engineering (names like the Solo®, the 400 Series or the Multi). But did you know that Haigh® macerators are now part of the MedPro Defense® family of infection control products?

When choosing to partner with Haigh® Engineering, we combined gold standard products with the exceptional customer support. This means that you can still get the macerators you trust, now backed by the experts in infection control that brought you other innovations such as the Nocospray® disinfection system and DermaFresh® pre-soaped gloves and sponges. What’s more, we now offer the latest Haigh® innovation, the Incomaster, which allows you to dispose of incontinence products such as briefs and pads with the push of a button.

So for all new macerator installations, keep trusting the gold standard: Haigh® by MedPro Defense®.

Visit us or the web: www.medprodefense.com
Or call us at 1.800.363.2381
Hand Hygiene Dispensing Technology for the Modern Hospital

Ecolab’s newest hand hygiene dispensing platform delivers everything you’ve asked for in a hand hygiene dispenser – improved efficiency, safety, simplicity and sustainability.

The Nexa platform can dispense an array of Ecolab hand hygiene products, including liquid and foam hand soaps, lotions, hand sanitizers and body shampoos, all from the same unit, making product change-outs easy.

Nexa’s simple design supports easy product identification with color-coded badges and language-free icons and better inventory management through the ability to hold both large and small product bottles, which fit into both the manual and touch-free units.

For more information: 800 352 5326 or www.ecolab.com/healthcare