INSIDE:

Rapid control of an MRSA outbreak in an ICU

Influenza vaccination by registered nurses: a personal decision
Congratulations!

to the 2009 Award Winners

The Virox Technologies Partnership is committed to supporting continued education and providing educational opportunities for the Infection Control Professionals in Canada. Through the financial support of the Partnership, 14 CHICA-Canada members have been awarded scholarships to attend the 2009 National Education Conference in St. John’s, Newfoundland.

Partners Furthering Education

Virox Technologies would like to thank the Patron Partnership for its continued support in the Scholarship Fund.
Needlestick injuries are just one of many hazards health care professionals are exposed to in their everyday practices. Safe sharps reduce the risk of transmission of blood borne disease by significantly decreasing these preventable injuries.

Angus Medical is proud to introduce the complete range of Delta Self Safe® Safety IV Catheters. These highly bio-compatible, thin-walled, polyurethane catheters are introduced with a safety mechanism that passively activates as the needle is withdrawn. The introducer needle is back-beveled for ease of entry and decreased patient discomfort.

Designed to be intuitive to use and with patient comfort in mind, the Delta Self Safe® is the right choice for health care provider and patient.

Health Care Professionals depend on products of the highest quality that will perform safe and effectively in a wide variety of situations.

Angus Medical is proud to introduce the Medefil brand of Prefilled MedeFlush™ Syringes. Created in a fully-automated, human-free environment, the highest level of sterility is assured. MedeFlush™ Syringes feature 4-ringed, ISO compliant stoppers for a safer, more controlled delivery and larger diameter barrels for reduced PSI pressure on IV lines.

See for yourself why Medefil is a trusted name in Prefilled Flush Syringes.

All products are latex, preservative, and DEHP free.
Isagel Kills greater than 99% of most microorganisms in 15 seconds or less.

In vitro Time Kill Results Isagel No Rinse Antiseptic Hand Cleansing Gel

<table>
<thead>
<tr>
<th>Organism</th>
<th>Log_{10} Reduction in 15 seconds</th>
<th>Percent Reduction in 15 seconds</th>
<th>Log_{10} Reduction in 30 seconds</th>
<th>Percent Reduction in 30 seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram Positive Bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. faecium (VRE)</td>
<td>>99.99</td>
<td>>4.99</td>
<td>>99.99</td>
<td>>5.45</td>
</tr>
<tr>
<td>Staph aureus</td>
<td>99.96</td>
<td>3.46</td>
<td>>99.99</td>
<td>3.76</td>
</tr>
<tr>
<td>Staph aureus (MRSA)</td>
<td>99.96</td>
<td>3.16</td>
<td>>99.94</td>
<td>3.19</td>
</tr>
<tr>
<td>Staph epidermidis</td>
<td>99.97</td>
<td>3.48</td>
<td>99.96</td>
<td>3.46</td>
</tr>
<tr>
<td>Staph haemolyticus</td>
<td>99.93</td>
<td>3.16</td>
<td>>99.96</td>
<td>>3.40</td>
</tr>
<tr>
<td>Strept pneumoiaize</td>
<td>>99.99</td>
<td>4.06</td>
<td>>99.99</td>
<td>>6.11</td>
</tr>
<tr>
<td>Strept pyogenes</td>
<td>>99.95</td>
<td>>3.34</td>
<td>>99.99</td>
<td>>4.37</td>
</tr>
<tr>
<td>Gram Negative Bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteroides fragilis</td>
<td>99.90</td>
<td>2.99</td>
<td>99.97</td>
<td>3.48</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>>99.99</td>
<td>5.79</td>
<td>>99.99</td>
<td>5.78</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>99.85</td>
<td>2.82</td>
<td>>99.97</td>
<td>>3.51</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>>99.99</td>
<td>>5.29</td>
<td>>99.99</td>
<td>>6.15</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>>99.95</td>
<td>>6.53</td>
<td>>99.99</td>
<td>>6.58</td>
</tr>
<tr>
<td>Salmonella typhimurium</td>
<td>>99.97</td>
<td>3.30</td>
<td>>99.99</td>
<td>>6.30</td>
</tr>
<tr>
<td>Serrat marcescens</td>
<td>>99.99</td>
<td>>5.88</td>
<td>>99.99</td>
<td>>6.26</td>
</tr>
<tr>
<td>Anaerobic Bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Difficile (non-pore form)</td>
<td>>99.68</td>
<td>>2.49</td>
<td>>99.98</td>
<td>>3.64</td>
</tr>
<tr>
<td>C. Difficile (pore form)</td>
<td>Not tested</td>
<td>Not tested</td>
<td>Not tested</td>
<td>Not tested</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida albicans</td>
<td>99.97</td>
<td>3.52</td>
<td>>99.99</td>
<td>>3.34</td>
</tr>
<tr>
<td>Viruses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herpes Simplex Type I</td>
<td>>99.999</td>
<td>5.3</td>
<td>>99.999</td>
<td>5.3</td>
</tr>
<tr>
<td>Herpes Simplex Type II</td>
<td>>99.9</td>
<td>3.7</td>
<td>>99.9</td>
<td>3.7</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>>99.9</td>
<td>3.9</td>
<td>>99.9</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Independent Laboratory, Data on File, Coloplast Corp, Skin Care Division
FEATURES

Rapid control of a methicillin-resistant Staphylococcus Aureus (MRSA) outbreak in a medical surgical intensive care unit (ICU) 12
Influenza vaccination by registered nurses: a personal decision 18
News from the Field: Buea Town: water, sanitation, Millennium Development Goals, and local realities in Cameroon 28

2009 NATIONAL EDUCATION CONFERENCE

Education Conference:
Solid Foundations ...
Shifting Horizons 31

News from the Field: Hospital infection control at Dos de Mayo Hospital, Lima, Peru 83

DEPARTMENTS

Editorial .. 6
President’s Message .. 8
Message de la Présidente .. 9
From the Executive Desk .. 10
Member Profile ... 66
Association News .. 77
Reach Our Advertisers .. 91

VISION

CHICA-Canada will lead in the promotion of excellence in the practice of infection prevention and control.

MISSION

CHICA-Canada is a national, multidisciplinary, voluntary association of professionals. CHICA-Canada is committed to improving the health of Canadians by promoting excellence in the practice of infection prevention and control by employing evidence-based practice and application of epidemiological principles. This is accomplished through education, communication, standards, research and consumer awareness.

The Canadian Journal of Infection Control is the official publication of the Community and Hospital Infection Control Association (CHICA)-Canada. The Journal is published four times a year by Craig Kelman & Associates, Ltd. and is printed in Canada on recycled paper. Circulation 3000.

©2009 Craig Kelman & Associates Ltd. All rights reserved. The contents of this publication, which does not necessarily reflect the opinion of the publisher or the association, may not be reproduced by any means, in whole or in part, without the written consent of the publisher.

ISSN - 1183 - 5702

Indexed/abstracted by the Cumulative Index to Nursing and Allied Health Literature, SilverPlatter Information Inc. and the International Nursing Index (available on MEDLINE through NLM MEDLARS system).

The Canadian Journal of Infection Control is a “Canadian periodical” as defined by section 19 of the Canadian Income Tax Act. The deduction of advertising costs for advertising in this periodical is therefore not restricted.
Executive Officers

President
Cathy Munford, RN, CIC
Infection Control Practitioner
Victoria General Hospital
1 Hospital Way, Victoria, BC V8Z 6R5
Tel: 250-727-4021 Fax: 250-727-4003
cathy-munford@shaw.ca

Past President
Marion Yetman, RN, BN, MN, CIC
Provincial IC Nurse Specialist
Government of Newfoundland Labrador
Dept. of Health & Community Services
1410 West Block, Confederation Bldg
P O Box 8700, St John’s, NL A1B 4H6
Tel: 709-729-3427 Fax: 709-729-7743
MarionYetman@gov.nl.ca

President-elect
Anne Bialachowski, RN, BN, MSc, CIC
Network Coordinator
Central South Infection Control Network
St. Joseph’s Villa
56 Governor’s Road, Dundas, ON L9H 5G7
Tel: 905-627-3541 ext 2481 Fax: 905-627-6474
bialach@hhsc.ca

Other Positions

Archivist
Mary LeBlanc, RN, BN, CIC
RRK2, Civic #11763
Tyme Valley, PE C0B 2C0
nanaandpapa@route2.pe.ca

Clinical Editor – Canadian Journal of Infection Control
Pat Piasawski, RN, BScN, CIC
Network Coordinator
Northwestern Ontario IC Network
289 Murno Street
Thunder Bay ON P7A 2N3
Tel: 807-683-1747
Fax: 807-683-1745
piaskowski@tbh.net

Distance Education Coordinator
Karen Dobbin-Williams, RN, BN
28 Dalhousie Crescent
Mount Pearl NL A1N 2Y4
Tel: 709-729-7743
Fax: 709-729-3427

Physician Director
Michael Gardam, MSc, MD, CM, MSc, FRCP
Director Infection Prevention/Control Unit
University Health Network
200 Elizabeth Street, Toronto, ON M5G 2C4
Tel: 416-340-3758 Fax: 416-340-5047
Michael.gardam@uhn.ca

Other Professional Agents

Auditor
Philip Romanuk, CA
Stefanos Lee Romanuk
1151 Portage Avenue
Winnipeg MB R3G 0S9
Tel: (204) 735-8976
pramanuk@illca.ca

Legal Counsel
Elliot Leven, LLB
Elliot Leven Law Corporation
204-100 Osborne Street
Winnipeg MB R3L 1Y5
Tel: (204) 944-8720
Fax: (204) 944-8721
leven@levenlegal.com

Web Master
Shirley McDonal, ART, CIC
RR 3, 4759 Taylor-Kidd Blvd
Bath ON KOH 1G0
Tel: 613-389-9810
Fax: 613-389-9800
chicawebmaster@mts.net

Membership Services Office

Executive Administrator/ Conference Planner
Gerry Hansen, BA
P O Box 46125 R PO Westdale, Winnipeg MB R3J 3S
Tel: 204-897-990/866-999-7111
Fax: 204-895-9595
chicacanada@mts.net

Delivers only:
67 Bergman Crescent, Winnipeg MB R3R 1Y9

Administrative Assistant
Kelli Wagner
kelli_wagner@mts.net
Suppress BSI-causing pathogens on the skin with Sage Antiseptic Body Cleanser 2% Chlorhexidine Gluconate (CHG) in a premoistened washcloth!

Bathing with Sage Antiseptic Body Cleanser resulted in a 53% reduction in the rate of blood stream infections. The same study also reported a significant reduction of inguinal colonization with all gram-positives, MRSA, VRE, yeast and gram-negatives.

Each disposable washcloth rapidly reduces bacteria on the skin that can cause infection. Unlike other CHG solutions, it’s designed to stay on the skin. So it provides maximum antimicrobial persistence against a wide variety of microorganisms. Sage Antiseptic Body Cleanser makes it easier to address skin decolonization.

Visit www.sageproducts.com/canada/chg for more information about Sage Antiseptic Body Cleanser

Call 1-800-323-2220 for a free sample.
The value of certification in the eyes of the public

In the Winter 2008 issue of CJIC, Deanie Lancaster (President of CBIC Board) wrote a compelling argument for the value of CIC certification citing other professional organizations which actively promote certification of their members.

For example, the Canadian Nurses Association defines certification as the “periodic process by which an organized professional body confirms that a nurse has demonstrated competence in a nursing specialty by having met the predetermined standards of that specialty.”

Many facilities and agencies cite CIC certification as a required qualification for Infection Control Professionals (ICPs). In at least one province (Ontario), their Best Practices for Infection Prevention and Control Programs (www.pidac.ca) recommends that ICPs obtain their CIC when eligible.

In the US the Joint Commission on Accreditation of Healthcare Organizations endorses the CIC.

The role of the Infection Control Professional (ICP) and the value of the practice of infection prevention and control (IPAC) is coming under increasing public scrutiny in Canada. News of infectious outbreaks and incidents are commonplace in local, national and international media drawing more attention to the importance of the IPAC program and the ICP. As cited in a previous editorial some provinces in Canada are now requiring public reporting of infections which further highlights the visibility of the ICP as a professional in healthcare.

“ICPs in Canada demonstrate to the public that they fulfill the practice requirements and have the necessary professional competences for this vital role through certification in Infection Prevention and Control.”

“News of infectious outbreaks and incidents are commonplace in local, national and international media drawing more attention to the importance of the IPAC program and the ICP.”

The CBIC website (www.cbic.org) states the purpose of the certification process is to protect the public by:

1. Providing standardized measurement of current basic knowledge needed for persons practicing infection control.
2. Encouraging individual growth and study, thereby promoting professionalism among infection control professionals.
3. Formally recognizing infection control professionals who fulfill the requirements for certification.

ICPs are truly a key component to protect patients and in turn the public. At the current time there are less than one quarter of CHICA-Canada members who list themselves as having a CIC. How do ICPs in Canada demonstrate to the public that they fulfill the practice requirements and have the necessary professional competences for this vital role? Certification in Infection Prevention and Control is an important way to demonstrate this to our patients and the public.
The protection you need, again and again.

When you choose Medline reusable surgical gowns made with Gore® barrier fabric, you don’t just get level-3 and level-4 CSA Class D/AAMI PB70 protection. You also get a gown that “breathes” to keep you cool and comfortable.

Medline gowns incorporate the patented Gore® bicomponent membrane, which helps prevent strikethrough of blood and fluids while still allowing perspiration vapor to escape.

Level-4 Gown

The liquid-proof Gore® membrane in our level-4 gown helps ensure maximum protection while keeping you comfortable.

For more information on gowns that offer you outstanding protection without sacrificing comfort, please contact your Medline representative or call 1-800-396-6996.

©2009 Medline Industries, Inc. Medline is a registered trademark of Medline Industries, Inc.

www.medline.ca
Shifting horizons, looking ahead

As I begin my term as president for 2009, I find myself in awe of all that has gone on before me, and trying to fill the shoes left by my predecessor Marion Yetman.

CHICA-Canada has grown from a few dedicated members to a membership of over 1500 since its founding in 1976. As we have grown so have the issues that our membership has faced. Among them are bioterrorism, multi-resistant organisms, epidemics, and resurgence of organisms once thought defeated. CHICA-Canada has kept pace with the evolution of infection prevention and control with interest groups and committees dedicated to the ever-changing issues and focus. Communication with members has evolved from a newsletter, written mail-outs and paper journal copies, to online communication, webinars, online journals, e-mail, and video conferencing. Distance education for infection prevention and control courses and CBIC certification through computerized testing is now possible.

As I look at where CHICA-Canada has come from, I find that I am excited in thinking about where CHICA-Canada is going. This year will be exciting as we prepare for the future direction of infection prevention and control in Canada. In May, the board, along with the chapter presidents, will meet for a strategic planning retreat. This will focus the direction for CHICA-Canada for the next five years. St. John’s promises to be an inspiring place to help our creative minds in imagining what the future could potentially hold for our organization.

St. John’s, Newfoundland-Labrador will be the site for the 2009 National Education Conference. St. John’s offers wonderful scenic views, down home hospitality and delicious east coast seafood. The conference promises to be just as enjoyable. The theme this year is Solid Foundations…Shifting Horizons. This will look at infection prevention and control based on a solid foundation of knowledge with a focus of adaptation to the shifting changes that we constantly face. Sessions at the conference will include something for everyone. There will be novice and advanced practitioner day; preconference day will look at mental health issues long-term care and preparing for the CIC exam. The conference itself will feature sessions to cover items such as the generation gap, pandemic planning, community, occupational health, antibiotic stewardship and outbreaks. The Conference Committee has planned an exciting week, with special events, and exciting educational opportunity as well as plenty of time to network with both new and old colleagues and friends. Full conference information programs can be found on the CHICA-Canada website at www.chica.org.

For those going to the conference this year, I suggest to prepare in advance. There will be much to do and see. Check out the conference website, and print off the handouts before you come for those sessions you want to attend. Check the map of the exhibit hall to plan your time efficiently. Remember not to burn yourself out by trying to do too much. Have fun, and enjoy the east cost music, food, and hospitality. Above all else, remember to say hi to me and the other board members, because we all represent you at CHICA-Canada.
Le congrès annuel, sous le thème
Shifting horizons, approche à grands pas
Cathy Munford, RN, CIC
Président, CHICA-Canada

A lors que j’entame mon mandat à titre de présidente pour l’année 2009, je constate avec admiration tout ce qui a été accompli avant moi. Je m’efforce d’être à la hauteur de celle qui m’a précédée, Manon Yetman.

Depuis sa fondation, en 1976, CHICA-Canada est passée d’un petit groupe de membres déterminés à une association comptant plus de 1 500 membres. Pendant que notre association prenait de l’ampleur, il en allait de même des enjeux qui préoccupent nos membres. Parmi ces dossiers, mentionnons le bioterrorisme, les organismes multirésistants, les épidémies et la résurgence d’organismes que l’on avait crus vaincus. CHICA-Canada a suivi le rythme de l’évolution des pratiques en matière de prévention et de contrôle des infections grâce à des groupes d’intérêt et à des comités qui se penchent sur les préoccupations et priorités en perpétuel changement.

La communication avec les membres a également évolué. Au début, nous envoyions un bulletin d’information et diverses lettres par la poste et notre revue spécialisée était distribuée en version papier; aujourd’hui, les communications se font en ligne, nous offrons des webinaires, les revues existent en version électronique, nous avons recours au courriel et aux visioconférences. Il est désormais possible de suivre des cours à distance en prévention et lutte contre les infections ainsi que de subir des tests informatisés en vue de la certification CBIC.

Tout comme que je mesure le chemin parcouru par CHICA-Canada, je m’enthousiasme à l’idée du chemin sur lequel CHICA-Canada poursuivra sa voie. L’année qui commence sera marquante pour ce qui est de l’orientation future de la prévention et du contrôle des infections au Canada. En mai, le conseil d’administration et les présidents des sections régionales se réuniront pour une retraite consacrée à la planification stratégique. Cet exercice déterminera l’orientation de CHICA-Canada au cours des cinq prochaines années. St. John’s promet d’être un endroit inspirant, qui aidera nos esprits créateurs à imaginer ce que l’avenir peut réserver à notre association.

St. John’s, à Terre-Neuve-et-Labrador, sera l’hôtesse de notre congrès national de formation en 2009. Cette ville recèle des paysages panoramiques, une hospitalité simple et chaleureuse, de délicieux poissons et fruits de mer caractéristiques de la côte Est. Le congrès s’annonce tout aussi agréable que cette ville.

Le thème retenu cette année, Solid Foundations…Shifting Horizons, évoque l’idée que notre association, tout en s’appuyant sur des bases solides, sait ajuster le tir. Cela nous amènera à poursuivre la prévention et le contrôle des infections en nous appuyant sur de solides connaissances et en mettant l’accent sur l’adaptation aux changements auxquels nous devons constamment faire face. Étant donné la diversité des séances, chacun y trouvera son compte. Il y a une journée de séances distinctes pour les novices et pour les experts. La journée précongrès portera sur les questions de santé mentale, les problèmes liés aux soins de longue durée et la préparation à l’examen CIC. Dans le cadre du congrès proprement dit, les séances porteront sur divers sujets, notamment l’écart entre les générations, la planification en cas de pandémie, la communauté, la santé au travail, la gestion des antibiotiques et les épidémies. Le comité d’organisation a planifié une semaine extraordinaire, des activités spéciales, des occasions de formation stimulantes et prévu amplement de temps pour réseauter avec des collègues et amis, nouveaux ou de longue date. Le programme détaillé du congrès se trouve sur le site Web de CHICA-Canada, à l’adresse www.chica.org.

Je suggère à ceux et celles qui assisteront au congrès cette année de bien s’y préparer. Il y aura beaucoup de choses à faire et à voir. Avant de partir, consultez le site Web du congrès et imprimez la documentation associée aux séances qui vous intéressent. Étudiez le plan du salon des exposants pour bien planifier votre visite. Faites attention de ne pas vous épuiser à essayer de trop en faire. Amusez-vous et profitiez bien de la musique, de la cuisine et de l’hospitalité de la côte Est. Surtout, dites-nous bonjour, aux membres du conseil d’administration et à moi-même, car après tout, nous vous représentons auprès de CHICA-Canada.

C’est évident!

Depuis 1968, le système “Glo Germ™” a été conçu pour évaluer les techniques hygiéniques, les étoffes antimicrobiennes, les soins aux mains, les inhibiteurs des micro-organismes, et renseigner les professionnels sur les risques qu’ils encouragent. Il permet donc de mesurer le niveau d’hygiène, les erreurs, et les bonnes pratiques de lavage des mains. Si on le compare avec d’autres systèmes, il démontre qu’il est plus précis et plus efficace. Le “Glo Germ™” est reconnu partout au Canada.

Parce que vous êtes en contact quotidien avec vos clients, il est recommandé de réduire toutes les germes et interdire la transmission de germes et de infections.

C’est évident!
A satisfied look back …

an enthusiastic look forward

In preparation for the upcoming Strategic Planning Retreat in St. John’s, I looked back at the Strategic Plans developed for CHICA-Canada from 1988 to the current document. The latter will retire with the implementation of the 2010-2014 plan.

It is interesting that the running themes through these initiatives are education, promotion of the ICP and CHICA-Canada, and infrastructure. In 1988 the goals were to establish a national organization which included communication through a journal; education through a day program at Centennial College, conferences and chapter initiatives; promotion of CHICA-Canada as a national voice for infection control practitioners; and of course the marketing of the role of the ICP.

The needs of CHICA and its members appear to not have changed through the years. The delivery has changed. Email was unheard of in the late eighties, and early nineties. Even the purchase of a fax machine for the association in 1990 was the cause of board discussion on whether it would be a worthwhile investment. The existence and impact of a communication highway called the Internet was only imagined by science fiction writers and did not even have a name. Since the inception of CHICA, and even past its 10th and 20th anniversaries, communication became mass communication. Education has become distance learning, webinars, and Internet resources. The promotion of CHICA-Canada as the national voice of infection prevention and control has created a situation of “beware of what you ask for” as the association and its representatives are in constant demand on provincial, national and international levels. The value of ICPs in reducing the financial and human burden of healthcare-acquired infections became a hard fact following the dramatic events of SARS. For all of this progress, we are grateful. However, it is time now to take stock of where we are, where we want to be in the next decade, and how we can get there without unduly straining human and financial resources.

In the past few weeks, CHICA-Canada members have been asked to complete an online survey that examines the role of CHICA-Canada in their education, their practices, and their professional representation. The results of the survey will be the basis of deliberations during the Board and Chapter Presidents Strategic Planning Retreat in St. John’s. We thank members who have given the survey their most thoughtful response.

“It is time now to take stock of where we are, where we want to be in the next decade, and how we can get there without unduly straining human and financial resources.”
Now 99.99% effective against 6 common pathogens known to cause catheter-related bloodstream infections (CR-BSIs)*

*These in vitro test results of typical devices have not been shown to correlate with a reduction in infections.

To learn more about the new V-Link device or any of our other products, contact your Baxter representative or the Baxter Product Information Center at 1-800-933-0303, or visit www.baxter.com.

The antimicrobial agent is not intended to be used as a treatment for existing infections.
Rx only.
For safe and proper use of this device, please refer to the complete instructions for use.
Rapid control of a methicillin resistant Staphylococcus Aureus (MRSA) outbreak in a medical surgical intensive care unit (ICU)

ABSTRACT

Background
Outbreaks of methicillin resistant Staphylococcus aureus in the intensive care unit setting can be prolonged and difficult to control. This report describes the rapid control of an outbreak of methicillin resistant Staphylococcus aureus in a 24-bed open-concept medical surgical intensive care unit with a baseline methicillin resistant Staphylococcus aureus acquisition rate of 1.5 cases per 1000 patient days.

Interventions/results
This institution’s infection control policy mandates an outbreak investigation if two cases of hospital-acquired methicillin resistant Staphylococcus aureus colonization or infection are identified in an intensive care unit within a four-week period. In July 2007, methicillin resistant Staphylococcus aureus was identified in the sputum of two patients within a one-week period. Screening of all patients in the intensive care unit identified one additional case and a fourth case was identified from a clinical specimen before control measures were implemented. Initial control measures included healthcare worker education, enhanced surveillance, patient cohorting, and enhanced environmental cleaning. Despite these measures, three more cases occurred. All patients were then placed in contact isolation, healthcare workers were screened, and the nursing staff was cohorted. After two weeks without a case, two additional cases were identified. Decolonization of all positive patients was initiated. No further cases occurred over a five-week period and the outbreak was declared over.

The outbreak resulted in nine cases of methicillin resistant Staphylococcus aureus colonization (n=8) or infection (n=1) over an 11-week period. Only one of 175 healthcare workers was colonized and it was not the outbreak strain.

Conclusions
Early detection and the stepwise addition of infection control measures resulted in the rapid control of an outbreak of methicillin resistant Staphylococcus aureus in a medical surgical intensive care unit without unit closure. A low threshold of suspicion and the rapid initiation of unit wide surveillance were the key steps in limiting the size of the outbreak. Complete cessation of transmission occurred after the initiation of decolonization for all positive patients.

Key words: MRSA, outbreak, ICU, decolonization, screening

BACKGROUND
Outbreaks of methicillin resistant Staphylococcus aureus (MRSA) in intensive care units (ICU) are often prolonged and can result in substantial morbidity and mortality (1, 2). While outbreak control strategies for ICU can be extrapolated from guidelines for MRSA control in hospitals, ICUs have unique challenges in controlling MRSA relating to the severity of illness of patients, the need for invasive procedures and indwelling devices in most patients, and the spatial organization of ICU, particularly in open concept units. We describe the rapid control of an MRSA outbreak in an open concept medical surgical ICU (MSICU) through early recognition of the outbreak and the stepwise addition of infection control measures.

Setting and routine infection control practices
St. Michael’s Hospital is a 550-bed, academic teaching hospital in Toronto, Ontario, Canada. Our MSICU is a
24-bed open concept unit with five private rooms that are prioritized for patients requiring airborne or respiratory droplet precautions but are also used for MRSA isolation when available. Risk-based surveillance is performed on all patients admitted with a history of MRSA, patients transferred from other facilities, or patients with a history of admission to hospital in the preceding year. These patients are screened at admission and are placed in a private room in contact precautions if positive. Patients identified as MRSA colonized that do not have wounds, tracheostomies or indwelling devices are considered for decolonization therapy.

The baseline rate of hospital-acquired (i.e. nosocomial) MRSA infection or colonization in our MSICU was 1.5 cases per 1000 patient days (approximately 10 cases per year). When a non-isolated patient was identified as MRSA colonized or infected in the MSICU, the patients immediately adjacent to this patient were screened for MRSA; if two cases were identified within a one-month period, all patients in the MSICU would be screened for MRSA (prevalence study) and an outbreak investigation would be conducted.

Outbreak description

On 2nd and 10th of July 2007, two patients in MSICU were identified as MRSA positive. Both were positive on clinical cultures obtained from the respiratory tract (endotracheal aspirates). As these two cases were identified within a one-month period, an outbreak investigation was initiated and a prevalence study was conducted on July 12th. Two additional cases were identified, one as a result of the prevalence study and the other from a clinical specimen (figure 1). Strain typing by pulsed field gel electrophoresis (PFGE) confirmed that all four cases were identical. Following the identification of these four cases of hospital-acquired MRSA, an outbreak management team was assembled that included members from the MSICU, infection prevention and control, corporate health and safety services, environmental services, microbiology and public relations. An outbreak was declared and an action plan was initiated on July 16th (Table 1 – Initial Interventions). The key interventions included education of healthcare workers (HCW) on MRSA control, enhanced surveillance through weekly prevalence studies and admission/discharge screening of all ICU patients, enhanced environmental cleaning and cohorting of patients.

Despite these interventions, three additional cases were identified over several weeks, two from clinical specimens and one from a prevalence study (figure 1). As a result of these new cases, additional strategies were implemented (Table 1, Additional Interventions I). Notable additional interventions included placing all patients (MRSA positive and negative) on contact precautions (gown, gloves and surgical masks in addition to routine practices),

<table>
<thead>
<tr>
<th>List of Interventions</th>
<th>Initial Interventions</th>
<th>Additional Interventions-I</th>
<th>Additional Interventions-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive patients cohorted at one end of the unit/ or in isolation rooms when possible</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Terminal cleaning of the Unit</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Weekly point prevalence screens</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Admission discharge screening</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Traffic flow re-directed to minimize unnecessary traffic</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Education sessions for all staff</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Contact precautions initiated for ALL patients regardless of MRSA status</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ALL staff screened for MRSA carriage</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>1:1 nursing was initiated with no cross coverage</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Respiratory therapy was cohorted. RT for a given day/shift were located exclusively on the MRSA side of the unit, or on the non-MRSA side</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>All rounds were to begin on the non-MRSA positive side of the unit and end on the MRSA side</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>All patients were bathed daily with 1% Triclosan and all MRSA positive patients were topically decolonized with 2% Mupirocin</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Visitors were limited to one at a time</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Outbreaks of hospital-acquired MRSA are commonly centered in critical care areas indicating that these patients are at higher risk of acquiring MRSA than other hospitalized patients. The epidemiology of MRSA in ICU is complex. Mobile reservoirs, such as personnel or medical devices, play an important role in the transmission dynamics. Despite the recognition of MRSA as a significant hospital acquired problem, there is no consensus regarding the most effective measures to control it.

We have described a small outbreak of MRSA in our MSICU that was controlled over an 11-week period. Although a number of different infection control interventions were used, making it difficult to be sure which interventions were critical in controlling the transmission of MRSA, we believe...
that some conclusions can be drawn from our experience.

Our policy of conducting an investigation and a prevalence study whenever two cases of MRSA are detected in the MSICU ensured that this outbreak was recognized before it was widespread and more difficult to control. As a result, the outbreak management team was able to meet, develop and implement the first phase of an MRSA control strategy when the outbreak remained small, with only four hospital-acquired cases detected.

Our initial interventions (Table 1 – Initial Interventions) which consisted primarily of education, enhanced surveillance, and cohorting of positive cases were largely effective in curtailing the continued expansion of the outbreak although complete cessation of MRSA transmission was not obtained.

As our investigation failed to identify a cause for the initially clonal nature of the outbreak, and our audit demonstrated breakdowns in routine infection control practices (e.g. lack of performance of hand hygiene, failure to wear appropriate personal protective equipment) we believe that transmission likely resulted from transient carriage on the hands of healthcare workers. This conclusion was supported by our molecular data which identified three different MRSA strains among hospital-acquired cases considered part of the outbreak, and the fact that only one of 175 HCWs were colonized with MRSA. This is in accordance with the published evidence, that HCW are likely to be important in the transmission of MRSA, most frequently acting as vectors rather than reservoirs (3-6). According to the literature, most carriage of MRSA in healthy HCW appears to be transient. So HCW may sometimes contaminate a patient but be MRSA negative by the time of the screening procedure (5, 6).

As occasional cases continued to occur, we added additional infection control measures in an attempt to end transmission (Table 1). Our first concern was that, given the evidence of continued transmission despite our initial measures, and the three- to four-day turnaround time for results following each prevalence study, patients with newly acquired MRSA would potentially spend several days on the unit without appropriate isolation. This was the rationale for the use of universal contact precautions (UCP) as part of our second line of interventions (Table 1).

The initiation of these secondary measures, including UCP, resulted in the cessation of transmission for several weeks. Two cases occurred immediately after these precautions were removed, however, although both cases most likely acquired MRSA during the period of precautions, as they were identified on clinical specimens (wound swab, endotracheal aspirate) not tested as part of previous prevalence studies and were both identified within two days of removing universal contact precautions.

Our other concern, over the course of the outbreak, was the rising proportion of ICU patients that were MRSA colonized (Figure 2). We felt that this increased “colonization pressure” was contributing to the outbreak by increasing the number of opportunities for cross transmission, particularly as there were some staff (i.e. physicians) that were not cohorted and there was ongoing evidence of intermittent breakdowns in routine infection control practices, including hand hygiene, throughout the outbreak. Acquisition of MRSA in ICU patients is strongly and independently influenced by colonization pressure (7). In the study by Coello et al (1994), treatment of MRSA carriers coincided with the reduction in the number of new cases and the control of a large hospital outbreak that affected more than 900 people (8). Because many of the MRSA patients had tracheostomies, indwelling devices or wounds, few were eligible for decolonization as per our protocol. However, as a response to ongoing transmission, we decided to decolonize all MRSA positive patients in the MSICU using 2% mupirocin ointment (three times a day) and 1% triclosan baths and shampoo (once a day) for seven days. (Table 2 – Additional Interventions II). No further cases occurred for five weeks with re-instatement of UCP and MRSA decolonization for all patients.

Since the outbreak ended, we have had only two hospital-acquired cases in our MSICU over one-year period. This rate is well below our pre-outbreak baseline, which may be due to a combination of factors including improved infection control practices, enhanced awareness of MRSA, and universal admission and transfer screening to the unit.

CONCLUSION

With early detection and the stepwise addition of infection control measures MRSA outbreaks in ICU can be controlled rapidly without unit closure. A low threshold for suspicion of an outbreak (one to two cases of hospital acquired MRSA in an open concept unit), the rapid recognition of secondary cases, and the rapid initiation of infection control measures can prevent outbreaks from expanding rapidly. UCP and/or decolonization of MRSA positive patients may be
additional useful strategies to consider if complete cessation of transmission is not obtained using standard approaches.

Acknowledgement
We would like to acknowledge all the staff and healthcare workers in the MSICU for their hard work to end this outbreak promptly. We would also like to thank Toronto Public Health Laboratory for providing the PFGE results for strain typing.

Reference List
MRSA† is a growing concern in hospitals across Canada. In 2005 alone, 11.2% of all S. aureus isolates were reported as MRSA. BD GeneOhm™ MRSA Assays help to identify, prevent and control MRSA by deploying rapid nucleic acid-based diagnostic solutions in just 2 hours. Patients carrying MRSA can now be identified on admission. Earlier intervention means preventing MRSA transmission and infection while reducing hospitalization costs. BD is committed to helping control Healthcare Associated Infections (HAIs) through breakthrough technology and innovation. To learn more call: 1-800-268-5430

*National Centre for Statistics and Analysis †Methicillin-Resistant Staphylococcus Aureus (MRSA) •Ministry of Health and Long-Term Care
BD, BD Logo and all other trademarks are the property of Becton, Dickinson and Company. © 2009 BD
Influenza is a contagious respiratory virus that causes high rates of morbidity and mortality and is associated with life-threatening complications. Despite the wide availability of a highly effective influenza vaccine, nurses are reluctant to receive influenza vaccination and vaccination rates among them are low. The purpose of this study was to generate a substantive theory/theoretical model regarding the phenomenon of influenza vaccination uptake by registered nurses (RNs). The study used grounded theory to develop a deeper understanding of RNs’ decision-making regarding the acceptance or refusal to be vaccinated against influenza in Nova Scotia, Canada. Data were collected from 11 RNs using an unstructured and conversational interview format and analysed using the constant comparative method. The primary finding of this study is that nurses consider getting vaccinated to be a personal decision (the core variable). Their decisions are based on sources of information (including formal education, continuing education and the media); personal knowing (personal philosophy, perceived risks and benefits and personal experience); and personal modifiers (the availability and accessibility of the vaccine). The process of making a personal decision defined in this study provides a framework for creating more effective influenza immunization education and delivery programs.

Key words: influenza; vaccination; decision-making; grounded theory; nursing

INTRODUCTION

Recently, improving influenza vaccine uptake for healthcare providers has been a topic of focus and debate. There is a plethora of literature about why providers accept vaccine and reasons why they do not. Most involves quantitative studies that have used questionnaires for obtaining data (1-6). We propose that these methods, or possibly the framing of the question, are not providing the insight needed into this issue, as programs for improving uptake rates are minimally effective. Also, no published studies have attempted to develop a substantive middle-range theory that can serve as a guide to understand the decision-making process nurses use when considering whether or not to accept influenza vaccine for themselves.

Significance

Influenza, one of the deadliest viruses of all time (7), is an acute viral disease of the respiratory tract involving fever, headache, myalgia, exhaustion, rhinitis, sore throat, and cough (8). Thirty-two pandemics have occurred since the identification of the disease with three appearing in the last century, in 1918, 1957, and, 1968 (9). Many experts agree that another influenza pandemic is unavoidable and imminent (9).

Providers of healthcare can acquire then transmit influenza to the populations they serve. Skowronski, Parker, and Strang (2000) found that 25% of all healthcare providers in British Columbia were infected with influenza during the winter months, potentially serving as vectors for the spread of disease (10). In response to such data (11-12), the National Advisory Committee on Immunization (NACI) in Canada and the Centers for Disease Control and Prevention (CDC) and the Advisory Committee on Immunization Practices (ACIP) in the United States recommends influenza vaccination of healthcare providers as one means of protecting vulnerable populations.

The statistics available regarding
influenza vaccine uptake by healthcare providers are disconcerting. NACI (2006) states that healthcare providers in hospitals and long-term care facilities show immunization rates of 26% to 61%, respectively (13). A 90% coverage rate is the target of most vaccine programs (13). These low rates are often the result of the failure of the healthcare system to provide the vaccine, as well as healthcare providers’ decision not to accept the vaccine (13).

This study focuses on RNs because they are the largest segment of the healthcare workforce, are likely to transmit influenza virus due to their intimate contact with patients, and can be influential in affecting the decisions of others to be vaccinated. Various studies conducted throughout Europe and the United States indicate that RNs are the most reluctant of all health professionals to receive influenza vaccination (3-5, 14-15). Some reasons cited for this reluctance include the nurses’ beliefs about the vaccine. Research has indicated that positive patient-physician relationships in which the provider promoted vaccination improved uptake by patients (16). Duclos and Hatcher (1993) found that recommendations by providers to take the influenza vaccine increased vaccination 30-fold in individuals over 65 and increased vaccination in people under 65 by 77 times, underscoring the importance of healthcare providers’ attitudes in the education of the public (17). Individuals who considered themselves at risk for disease also had higher rates of vaccination (16).

Because little is known about the processes of deciding whether or not to be vaccinated against influenza, this study addressed the following question: Nurses are eligible to receive the influenza vaccine. How do they make their choice whether or not to be vaccinated?

METHOD

This study was done using a grounded theory method. Grounded theory is an inductive method, influenced by symbolic interactionism and pragmatism, and offers an approach to exploring social processes present in human interactions (18). The participants shared the process by which they made decisions about influenza vaccination and the theoretical model developed in this study is grounded in that data. Ethics approval for this study was received from the University of Calgary Conjoint Health Research Ethics Board. Pseudonyms have been used to protect the identity of the participants.

Setting

The setting for this study was the province of Nova Scotia. The influenza vaccine is offered free of charge to all healthcare providers in this province.

Sampling

Theoretical sampling was used for recruiting the sample for this study. “Theoretical sampling is the process of data collection for generating theory whereby the analyst jointly collects, codes, and analyzes his data and decides what data to collect next and where to find them, in order to develop his theory as it emerges,” (19).

For the selection of the first participant, Glaser (1978) suggests that the researcher talks to someone knowledgeable in the field in order to “get a line on relevancies and leads” (19). The first participant for this study was a community health nurse who had over two decades’ of experience in nursing, and an outstanding ability to articulate her decisions about vaccination. Participants for subsequent interviews were chosen based on their characteristics and ability to aid in the development of the substantive theory. The intent was to seek maximum variation in order to fully describe the phenomenon of decision-making about influenza vaccination by RNs. The process of theoretical sampling continued until no new concepts were emerging and the theoretical categories were saturated with data.

The final sample consisted of 11 RNs who 1) were registered with the College of Registered Nurses of Nova Scotia; 2) had at least one year of nursing experience; 3) were able to read and write in English; and 4) were willing to participate. The sample consisted of nine females and two males. Their ages ranged from 32 to 64 years. The average age was 47 years. Ten participants were Caucasian and one was Black. Location of residence and work consisted of three main areas in the province that included Halifax, Antigonish, Guysborough and Cape Breton. Participants had varying qualifications including diploma (n=4), baccalaureate (n=4), and master’s education (n=3). Years of nursing experience ranged from 3.5 to 35. Nursing employment settings included long-term care, acute care, public health, mental health and education. Of the participants, seven were vaccinated and four were not vaccinated against influenza.

Data collection and analysis

In grounded theory studies data collection and analysis occur simultaneously (19). It is assumed that the researcher does not know in advance what questions to ask because he or she does not know how the interviewee defines the issue. The first few interviews were unstructured and conversational to allow the categories and processes to emerge to ensure that the informant’s views are foremost. Each interview began by asking the question “As a registered nurse you are eligible to receive the influenza vaccine free of charge, how do you make the choice whether or not to be vaccinated?” After the analysis of each
interview tentative hypotheses were generated. The emerged hypotheses guided the line of inquiry with the next participant; this is necessary to confirm or discard the hypotheses in order to construct a substantive theory/theoretical model. Questioning becomes more directed as the researcher tries to fill in conceptual gaps and achieves saturation. Field notes and memos were written following each interview. Audio recordings of the interviews were transcribed and then entered into the Atlas.ti ™ software data management program.

Analysis of the data was conducted using constant comparative methods, whereby each item of data is compared with every other item of data. This analysis guided further sampling and data collection. Data analysis included open, selective and theoretical coding. The process started with open coding where the data was read line by line and the information was broken down and analyzed. After all the initial codes were developed, individual codes were placed in categories through selective or second-level coding. This helped to further develop the core category and the properties of the categories. Theoretical codes were then developed to construct categories by asking questions of the data using the 6 C's: causes, contexts, contingencies, consequences, covariance, and conditions (19). Theoretical coding revealed 10 conceptual categories. The process of analysis was enhanced by using memo writing and developing a visual version of the emerging theoretical model.

FINDINGS

The Core Variable: A Personal Decision

The core variable “a personal decision” is reflected in the narratives of the 11 RNs who participated in this study. This decision was considered personal, because no particular governing body or policy mandates influenza vaccines for RNs in the province of Nova Scotia. The participants in this study felt that the decision to accept or refuse the influenza vaccine was their own, even though most of the participants were influenced by outside factors such as the opinions of family and friends and organizational pressures. A stated simply “It is just a personal health choice.” E stated that he has never felt “guilted” into getting the vaccine and voiced the hope that other nurses felt the same. “I would hope that others would have enough backbone to make their own decisions.”

The content of the interviews revealed that most participants entered into internal dialogue where they considered alternatives, but the amount of consideration given varied among participants. Some had thought about the decision in advance while others made the decision quickly, with little contemplation. Some of the participants went through a process of considering the variables that affected their decision. These variables included their education about the risks and benefits of vaccination, workplace risk, and past experiences. S said:

“In terms of making a decision, I’d say probably the education, and also the awareness that you’re not only protecting yourself, you’re protecting the people you’re caring for, and I think if you’re a good nurse that’s why you’re there, is to help people, so you wouldn’t want to complicate the situation by giving them influenza.”

E gave an alternate perspective: “I guess to this point in my life, I haven’t given it a whole lot of thought.”

The participants who had spent more time in contemplation, or had considered the options in more depth, seemed more set in their decisions. Individuals in the group that accepted...
the vaccine would go out of their way to receive the vaccine and were not swayed by barriers to receiving the vaccine. S said, “I would seek it out. If I couldn’t get it in one place, I would go somewhere else.”

Commitment to accepting the vaccine also had a strong moral component where participants took into account the effects of their actions on relatives and friends. These participants believed that their decisions were best and that no other option was morally justifiable. W said: “When it first became available at the hospital, I just thought it was a good thing to do. I don’t want to be missing time from work. That was one of my biggest things. I don’t want to get the flu…I don’t want to pass it on to *, that’s another one of my big concerns, with him being diabetic. I don’t want to pass it on to people who are vulnerable in the OR.”

Commitment to refuse the influenza vaccine was also evident in some of the narratives. This decision seemed somewhat stable for these participants and information given to them on the benefits of the vaccine was met with resistance. It appeared little could be done to change their decision. As an example, A states it would take a life-altering event, such as being diagnosed with cancer, to change her mind about accepting the vaccine: “I feel right now, and I guess basically my strongest reason is I feel that I’m able to combat whatever flu that come by…my history has been that I’m very healthy. And that I haven’t really had illness, thank God. So, you know, as long as I can continue like that, I will continue not to take the vaccine.”

Commitment to refuse or accept the influenza vaccine often followed one of two paths after the decision was made. The decisions about the influenza vaccine were often seen as unimportant and other more pressing life issues were often given more attention. J said, “I have to survive now first. I am in a survivor mode, finish my education, feed my children and then the health promotion things will come. It’s not something I give a priority in my life.”

Participants with less-defined positions also seemed more receptive to information and were less resistant to changing their decision. Often these participants would question their intent to act during the interview or would request information about the vaccine. J supported that idea: “So how important is this? You educate me. Would you compare it to, the risk associated with influenza, with that associated with tuberculosis?”

It appears that many of the participants, who vacillate between acceptance and refusal, may be experiencing some degree of decision conflict stemming from lack of knowledge, unclear values, social pressure and lack of resources. E said, “In light of things such as SARS and the response throughout the world to those kinds of things, I guess maybe I need to rethink my approach to this stuff.”
Categories
The core variable was supported by three categories: a) sources of information; b) personal knowing; and c) personal modifiers. Subcategories were constructed to capture the multiple dimensions of the processes within each category.

Sources of information
Formal education, continuing education and the media were cited as the sources of information that were most influential in RNs’ decisions about the influenza vaccine. Only three out of the 11 nurses stated they had received information about influenza vaccination in their formal educational preparation. A was typical of the participants’ experience learning about the influenza vaccine stating, “No. Nothing. Not anything formal.” More stated they had learned general immunization principles.

Education programs offered through work seemed to be the most prevalent source of immunization education across all areas of the healthcare sector. Continuing education offered by the provincial Department of Health was viewed as “excellent” and seemed to prompt nurses to reconsider their decisions about the importance of the influenza vaccine. S:

“Now I had separate things through my workplace, because I worked with an elderly population, so there was a real push from the health department for influenza vaccine, especially the last couple of years. I went to a half-day workshop put on by the Department of Health, which was excellent...so, because of that, I think, it made me really consider it again.”

The Medical Officer of Health of one District Health Authority was considered an authority about influenza vaccine. C:

“I think it’s important to walk the talk and talk the walk. I also think that if you have a champion that’s willing to go the extra mile, like Dr. X, he has done a tremendous amount of work, promoting the vaccine. He gets all the other MOHs on board to participate.”

Continuing education developed and presented by individual institutions seemed to have a smaller degree of influence over the participating RNs’ decision to accept or refuse the influenza vaccine. Dissemination of influenza information as provided by the media was described with ambivalence. Some described the media as an important vehicle for information dissemination; others believed the media provided misinformation.

Personal knowing
The second category, personal knowing, includes personal philosophy, perceived risk to self and others, and personal experiences. One component of personal knowing is the RN’s philosophy of how health and illness are viewed. Most nurses placed value on individual and aggregate models of healthcare; few considered the health of the population when deciding whether or not to have an influenza vaccination. C:

“I think oftentimes vaccines are seen as a task in delivering and I need to get the vaccine to the arms and it’s not really the big picture view of what you’re seeing in terms of from an outcome perspective or from a coverage perspective or the health of the population.”

Some nurses consider the ethics of beneficence, the activity of benefiting others, to be central in the decision to vaccinate; others considered the ethic of autonomy. Some RNs who view vaccination from an individual perspective feel that they are not a risk to others. A, who works in mental health, stated that she did not consider others because she is healthy and her patients not high risk:

“I don’t think I am a threat to others based on my history. I have been very well. As I say, if I had it once or twice in my life, that would be different. So I really don’t think that I am a threat to anybody. Also, the patients that we have are for the most part physically fit. Generally the people that we have are not medically or seriously compromised at the time we’re working with them.”

C believes that many nurses underestimate the protective value of the vaccine in safeguarding patients from the influenza virus.

“I know that I’m a carrier to other people who are very vulnerable, and I think that if I’m going to be in that workplace, it’s my responsibility to try and protect those people as their caregiver. Because a lot of what you hear is, oh, either I never get the flu or I had the flu and it wasn’t that bad. They don’t realize the protective value for other people having it.”

Perception of risk refers to nurses’ understanding of adverse effects of influenza vaccination. Perceived risk is linked to factors including the nurse’s age, place of employment, perceived seriousness of the disease and the science of the vaccine. Perception of risk seemed to influence on a participant’s decision to accept or refuse the influenza vaccine.

The final component in this category is personal experience. Factors that contributed to the decision to accept or refuse the influenza vaccine included:
1) age; 2) stories from family members; 3) work life experiences; 4) experiencing the side effects of the vaccine; and 5) suffering from influenza or chronic disease.

Personal modifiers
Some participants were less committed to either accepting or refusing the vaccine. Theses RNs were heavily influenced by the availability and accessibility of the vaccine. Less committed participants cited convenience, incentives and seeing their colleagues or nurse manager receive the vaccine as influencing their decision. For example, M said:

“Convenience is probably my big thing this year; I didn’t get it this year because I wasn’t in a healthcare facility. They say, go to public health...And, no, it was inconvenient, to be honest, you know, to go over and get it. If they had it on site, closer, I wouldn’t think about it.”

C states that seeing co-workers receive the vaccine provides incentives for others:

“Well, sometimes seeing their co-workers do it. And having someone that they know go with them, or seeing somebody that they thought would...
Effect of a Near-Infrared Light Vein Viewing
Venipuncture Success Rate in Pediatric Patients.

Nurses are on the front line of patient advocacy, committed to finding new methods of enhancing the lives of those in their care. With a first stick success rate two times that of traditional methods*, VeinViewer® by Luminetx® is lighting the way to better patient care. Ask for VeinViewer by name and see what thousands of clinicians and patients have seen: a better way**

Distributed by:
CAREstream Medical Ltd.
TEL: 1-888-310-2966 FAX: 1-888-310-2957
WWW.CARESTREAM.COM

VEINVIEWER.COM
VeinViewer® by Luminetx®

*Nearly 2x the Effect of a Near-Infrared Light Vein Viewing Device on Venipuncture Success Rate in Pediatric Patients. Wolfson Children’s Hospital, Jacksonville, FL 2007-2008.

A critical step in countless procedures starts with locating a vein. Sometimes, despite your proficiency and skill, doing so can be a frustrating task. But with VeinViewer, you have a partner to a better way.

The VeinViewer imaging system is a revolutionary, hands-free medical device that increases your success of finding the vein on the first attempt. A real-time image is projected directly onto the skin, allowing you to confirm the optimal venous access site.
never have it, seeing them in the chair receiving their vaccine, she does it, maybe it’s not so bad... But if they can see that the 15 other people that had it, had no problem with it, then they, it starts to kind of break down the fears a little bit.”

Availability and accessibility are not important indicators for nurses who have already made the commitment to accept the influenza vaccine for themselves. They will actively seek out opportunities to receive the vaccine.

Personal decision-making model

The theoretical model that emerged from this study is entitled *Influenza Vaccination: A Personal Decision*. The core variable “personal decision-making” is supported by the three categories labeled a) sources of information b) personal knowing; and c) personal modifiers. See Figure 1.

DISCUSSION

This study revealed that the decision to accept or refuse the influenza vaccine is affected by a complex interplay of cognitive, emotional and social interactions and is shaped by contextual factors among the nurse, other healthcare providers, peers and organizational structures.

In the initial phases of the decision-making process, the nurse considers a multitude of factors (sources of information, personal knowing and personal modifiers) that affect the decision to accept or refuse vaccine. At that point, the nurse consciously or subconsciously weighs the pros and cons of accepting or refusing the influenza vaccine through an internal dialogue or “self talk”. For instance, the nurse may wonder, “Have I been convinced by the information I have received?” or “What are my past experiences and how does this affect my present knowledge and beliefs?” and “Is the vaccine available and accessible?” According to Arnold and Boggs (2003) self talk is a cognitive process that produces thoughts, which then lead to feelings about a particular situation (20). It is important to note that in the internal dialogue there is reciprocity among sources of information, personal knowing and personal modifiers.

Figure 1 illustrates this phenomenon, indicating the circular nature of the interaction among the categories.

This internal dialogue may result in three outcomes: 1) accepting the vaccine; 2) refusing the vaccine; or 3) remaining undecided. Those who accept go though another decision process as they consider where, from whom, and when to receive the vaccine. Some then are committed to their decision; others not. Janis and Mann (1977) state that “the higher the degree of commitment…. the greater the decision maker’s resistance to any challenging event or communication that is capable of making him momentarily regret his decision” (21).

In this study most RNs who refused the vaccine or vacillated between acceptance and refusal cited lack of personal risk as a reason for their decision (22). If personal risk was an issue or a situation occurred that placed the participant at higher risk, reconsideration of the decision to accept would occur. For instance, if a participant’s health deteriorated (perhaps several bouts of flu or pneumonia) or the participant was working in an area where flu was prevalent, then reconsidering the vaccine might become an option for someone. The degree of personal risk was also linked to nurses’ moral perspective on uptake of the influenza vaccine. Where risk to self or others was thought to be high, nurses would engage in a reasoning process based on their ethical values and professional obligations. Janis and Mann (1977) described the concept of “moral decision-making states” (21). Once an individual realizes someone requires aid and there is an obvious way that help can be initiated, the individual takes action without considering other alternatives. This was evident for some of the participants in the study, particularly those who worked with the vulnerable elderly or had family members living with a chronic illness. Further, Janis and Mann (1977) say when a decision-maker does not accept responsibility or is otherwise engaged in another person’s problem, he is not likely to use moral reasoning as a decision rule (21). The greater the responsibility felt, the greater the chance a person will follow a normative prescription of offering assistance (21).

Nurses who remain undecided are frequently not personally engaged in the issue. So many issues compete for the RNs limited time and attention that someone may know about a health concern without seriously considering if they need to do something about it (22). Many participants stated they had no time to obtain the vaccine or had not given the subject much thought. As a consequence, they did not form definite opinions on getting the influenza vaccine. Many authors agree that individuals who have not formed a definite opinion about an issue are more likely to be persuaded by others to accept health behaviour (23-24). Thus it is appropriate to aim interventions at RNs who are undecided.

RNs who showed a lack of commitment to their decision had not spent much time considering the influenza vaccine. They tended to vacillate between acceptance and refusal from year to year. This vaccination was prompted by one’s source of information, personal knowing, and personal modifiers. The most notable effect was from the “personal modifiers” at the workplace, which either facilitated or discouraged vaccination, independent of intention (25). Triandis describes “facilitating conditions” as the characteristics of an individual (knowledge or ability) or the environment that make it easier or more difficult to perform a behaviour, independent of a person’s intention. Facilitating conditions moderate the effect of intention on behaviour (25) particularly for participants who fluctuate between acceptance and refusal and those who make a passive decision to accept the influenza vaccine, or do not consciously weigh out the pros and cons of the decision. Making the vaccine readily accessible at the workplace may facilitate these individuals receiving the vaccine.

Decisional conflict was also evident in the group of participants who vacillated between acceptance and refusal of the vaccine. Decisional conflict is the uncertainty about which course of
Isolation Unit - ISO

This unit is designed for moving items required to protect the patient, as well as staff and visitors. The unit is placed in the corridor near the door of an isolation room. It's casters enable the unit to be tilted and moved easily from one room to another.

It's very practical!

It takes up very little space, only 16" in depth, and can easily stand against the wall of any corridor.

The isolation unit model "ISO" has been designed on the same lines as the very popular model "B".

The unit may be customized to accept any kind of product or accessories required.

"I'm really satisfied with your isolation units, and I must say I've made some other people jealous..."

"The staff is really happy with our new acquisition."

"It's much more practical."

Nancy McMullen
Head of UCD department and liaison with CSSS Vallée-de-la-Gatineau

Medic Acces

For more information, contact Medic Acces at 450-602-1556 or visit www.medicacces.com
action to take when choice among competing actions involves risk, loss, regret or challenge to personal life values (26). In this study uncertainty or conflict stemmed from a challenge to personal values, lack of knowledge about the influenza vaccine and lack of resources in terms of availability and accessibility, suggesting employers could offer decision support to individuals experiencing decisional conflict to help them make an effective and timely decision.

CONCLUSION
This study provides a theoretical model that reflects the many facets of a nurse’s decision to accept or refuse the influenza vaccine. The study findings can be used to understand the context in which nurses make decisions about getting influenza vaccine. In particular, the data generated has highlighted the decision-making process nurses use and illuminates the many factors that contribute to the adoption or refusal of the influenza vaccine. This knowledge provides a framework for creating more effective influenza immunization education and delivery programs. A multiple-intervention, socio-ecological approach offers an expansive framework for understanding and modifying the range of social and environmental factors that shape nurses’ decision-making.

References
15. O’Rourke C, Bourke W, Bedford D. Uptake of influenza vaccine by

26. O’Connor AM, Bourke W, Bedford D. Uptake of influenza vaccine by
the next generation of sterility assurance is here.

Introducing the new Class 6 Verify® SixCess™ Challenge Packs and Indicators

» Reduce the wait: immediate release of all loads
» Reduce the risk: eliminate "blind" release
» Reduce the work: no readers or incubation required

For more information, contact STERIS Canada Inc. at 1.800.661.3937 or visit www.steris.com
Buea Town: water, sanitation, Millennium Development Goals, and local realities in Cameroon

INTRODUCTION
Every year in Africa there are 1.7 million deaths related to unsafe water, sanitation and hygiene, mainly through infectious diarrhea. Water is a resource we can’t live without, but it is a resource that is so limited, especially in developing countries. That is why in 1992 the United Nations Conference on Environment and Development established World Water Day. The fact that provision of safe drinking water was added to the eight components of Primary Health Care policy found in the Alma Ata in 1978 is an indication that the scarcity of safe drinking water has been a problem for more than 40 years.

Global warming is a further threat to water and food sufficiency. Increased temperatures alter seasons and vegetation; reduce rainfall, therefore reducing streams and rivers. The current food crisis all over the world, including Cameroon, is just a warning that bad days lie ahead. Much has been said about global warming in Cameroon but very little is being done.

Today many families in Cameroon cannot afford a meal on their tables each day. Prices of basic food commodities are skyrocketing every day. A bag of rice that used to be sold at $28 two years ago now sells for $46. According to the World Health Organization (WHO), six in 10 Africans remain without access to proper toileting facilities, while poor sanitation threatens public health. According to Ann Veneman, nearly 40% of the world’s population are denied access to proper toileting facilities, while poor sanitation threatens public health. According to Dr. Margret Chan, sanitation is a cornerstone of public health. Improved sanitation contributes enormously to human health and wellbeing. The absence of adequate sanitation has a serious impact on health and social development. Poor personal hygiene, sanitation, and contamination of water sources, especially with human waste, are thought to be the main causes of diarrheal diseases and schistosomiasis in developing countries. Just like Zimbabwe in August 2008, outbreaks of cholera due to contamination of water sources are reported frequently in developing countries like Cameroon, which has recorded many of such outbreaks in the past five years.

BACKGROUND
According to a 2004 Demographic Health Survey, the population of Cameroon has been estimated at 18 million. As in other developing countries, 80% of the population was thought to live in rural areas. However, for the past decade, the township population has increased alarmingly due to rural exodus, creation of institutions of higher learning, along with many other reasons.

According to an unpublished report from the Ministry of Health, only 23% of the population in urban areas has access to good potable water and less than 10% in rural areas. In addition, less than 30% of the urban population has access to acceptable toileting facilities.

The situation in Buea Town
Buea Town is the regional capital of the South West Region of the Republic of Cameroon. It is located at the foot of Mount Cameroon, approximately a 60-minute drive from the west coast chief town of Douala. It is an evolving town with a population of roughly 120,000. This number has increased from less than 40,000 people before 1993. The alarming population increase is not matched by increase in basic resources like water and electricity. Though situated
between many large rivers which can be utilized for domestic use, little or nothing is being done to improve the situation. People experience electricity and water shortage on a daily basis, with water shortage being more detrimental because it has no substitute and its vital role in the maintenance of life.

Water shortages in developing countries such as Buea and other towns in Cameroon is a very chronic problem. Many peoples’ homes do not have water. Even those who have water piped into their homes sometimes go for weeks without it due to shortages. The result of the water shortage is overcrowding at public taps, which usually ends up in quarrelling, fighting and breaking of buckets due to population pressure. In order to fetch water, students, children, and women spend long precious hours at the taps, usually late in the night or early in the morning. They are exposed to mosquito bites and cold temperatures which lead to increased risk for malaria and respiratory tract infections.

Those who can afford vehicles cover many miles with their cars to fetch water in nearby communities. Those who are without access to automobiles simply carry water from contaminated nearby streams, which are also used for laundry, gardening, bathing, dumping of wastes, and sometimes defecation.

Ironically, in a community like Molyko where water shortage is so chronic, 90% of the toilets are water systems. When people do not have water to flush their toilets they simply defecate in nearby streams, or on the ground, where it is eventually washed in to the streams when it rains. Some households use buckets to flush their toilets, while others continue to use their dry toilets until they have water to flush. All of which are serious threats to health.

The absence of a proper functioning waste management plan has made things worse. Waste disposal practices are very poor. Most households dispose of household waste on the surrounding streets, streams, and water runways.

The situation in Buea is a true reflection of what is showcased in other towns in Cameroon.

In schools
The situation in schools is the same as in households. Unfortunately, many schools have no functioning water systems. The toilets remain closed most of the times, especially during the dry season (January to March), due to lack of water. Sometimes even during the rainy season the taps are very unpredictable.

CONCLUSION
Much has been done but much still needs to be done in Cameroon. Considering the situation, and being 60% of the way into the Millennium Developmental Goal (MDG) (2000-2015) while also being a few months away from celebrating World Water Day, it is clear we are lagging behind. Improving sanitation facilities and promoting proper hygiene in schools increase both the learning and health of children. Increasing investments aimed at improving access to water and sanitation, involvement of local communities in project identification, need assessment and management will help to progress toward the MDG and alleviate suffering of the rural masses in Cameroon.

References:
Alma Ata Declaration 1978
Ann M. Veneman, UNICEF Executive Director.
Dr Margaret Chan, WHO’s Director-General
Community as partner, Theory and Practice, by T. Anderson, 1996
From patient to patient...
We can make a difference.
Online registration now available! www.chica.org

2009 NATIONAL EDUCATION CONFERENCE
MAY 9-14, ST. JOHN’S, NEWFOUNDLAND

2009 Conference Sponsors
(at time of printing)

Platinum: 3M, BD, Ecolab
Gold: Baxter, Virox
Silver: Vernacare
Bronze: Cardinal Health
Sponsor: Provincial Infection Control Network (BC)
Supporter: Draeger, Getinge, Überloo, Les entreprises Solumed – A 3M Company
CHICA-Canada has appointed a National Scientific Program Committee to plan the education sessions of the annual conference. The 2007 national conference was the first conference for which the education sessions were developed by a committee made up of CHICA-Canada members from across Canada. The CHICA-Canada Scientific Program Committee members represent community, long-term care, acute care, and microbiologists/infectious disease physicians, and include representatives from the local chapter and board. As of 2011, the committee will include one member-at-large, chosen from CHICA chapters in rotation. One way to have a voice in conference planning is to participate as a member of the National Scientific Program Committee. Committee members are all volunteers and appointed by the board of CHICA-Canada after an application process. An application to participate on the 2011 Scientific Program Committee is on page 73.

Conference attendees can have a great influence on conferences of the future. All conferences have evaluations for attendees to indicate what they liked, disliked, and suggestions for the future. It may be hard to believe, but the committee and the Conference Planner read all of these, compile the comments and suggestions, and discuss the merits of each. Suggested topics will be explored by the committee for possible inclusion in an upcoming conference. In addition, feedback is sent to the speakers so they can learn and improve their education sessions.

Scientific program planning for both the 2009 conference in St. John’s and the 2010 conference in Vancouver commenced with the evaluations from previous conferences.

Your voice is powerful, yet we only receive 10-15% of evaluations back. We hope that sharing how future conferences are planned will help all conference attendees appreciate they have a voice in this planning. Let us hear that voice.

In addition, conference attendees play a large role in rewarding the authors of the best poster and best oral presentations. These two awards are presented each year at the end of the conference. We would especially like to thank Lesenterprises Solumed – A 3M Company for providing the annual prize for best oral presentation. The Abstract Selection Committee identifies which abstracts are selected for oral or poster presentation but the winners, both for the best oral presentation and for the best poster, are determined by your votes.

We need you to do a bit of work for us: VOTE! Different methods of voting will be used for the oral sessions and the poster presentations. All voters will be entered in a draw for a participation prize, to encourage all conference attendees to vote for their favourite presentations.

Your Scientific Program Committee is looking at new ways to get feedback on the oral presentations that will allow the best
presentation to stand out. This is a difficult process as an attendee cannot get to all oral presentations; at the 2009 conference there will be four different sessions of oral presentations occurring at the same time, on both Tuesday and Wednesday of the conference. This is a result of the increase in submissions of excellent abstracts. Understanding that dilemma, the committee has developed a rating system, where you would evaluate each oral presentation that you attend on a fixed-point scale. The oral sessions will all be listed on a form to make it easier for you to rate the presentations you attend; hand in the form at the end of the last oral presentation sessions (Wednesday, May 13). Each speaker then receives a score, and the speaker with the overall highest average score would win the Solumed Oral Presentation prize.

To vote for best poster presentation, rather than rating each poster, we are asking attendees to fill out a card identifying the best poster presentation they experience. The poster with the most votes will win the award. Please read over the abstracts in this journal (abstracts are also posted to www.chica.org). Mark those abstracts that catch your attention, either because of the subject matter, or the innovations discussed. Poster viewing time is limited because of our busy program, so you need to plan your time at the poster sessions carefully. Posters will be arranged numerically so you can find the ones that interested you quickly. Spend time with the author who will be present at the poster during scheduled times. The presentation schedule for Tuesday and Wednesday will be posted to www.chica.org shortly before the conference and will also be in the on-site program. Use your own rating criteria (e.g., relevance to you, clarity of presentation, lessons learned), so you can fill out your ballot card with your favourite poster. Hours of work go into preparing these posters, and the extra time you spend both in this analysis and voting help our entire organization.

At the St. John’s conference, each member of the Scientific Program Committee will be identified by a ribbon on their name tag. Stop us to have a chat and offer suggestions. All of us work on two consecutive conferences so your voice will be heard.

The annual CHICA-Canada Conference is gaining an international reputation as one of the finest venues for infection prevention and control education. This is your annual conference, your opportunity to meet with your peers and experts in the field of infection prevention and control. It is also the chance for your voice to shape future conferences. Give us your feedback on this year’s conference, and vote for your favourite oral and poster presentations!

Jim Gauthier, MLT, CIC
Donna Moralejo, PhD
Gerry Hansen, BA

Jim is the Scientific Program Committee Co-chair for the 2009 conference, and the Scientific Program Chair of 2010.

Donna is the Scientific Program Committee Chair for the 2009 conference and is CHICA-Canada’s Director of Education.

Gerry is the Executive Administrator and Conference Planner for CHICA-Canada.
NOTICE IS HEREBY SERVED that the Annual General Meeting of the Community and Hospital Infection Control Association – Canada will be held on Thursday, May 14, 2009 at the Delta St. John’s, St. John’s NL, 0700 hrs. A Town Hall meeting will be held immediately following the Annual General Meeting. CHICA-Canada members must register and pick up voting card before entering the AGM.

CHICA-Canada and Les enterprises Solumed are pleased to announce the formation of the Solumed Oral Presentation Award. The award for Best Oral Presentation, as chosen by attendees of the 2009 Education Conference, will be presented a prize of $1,000 at the conference closing ceremonies.
Our family of latex-free surgical gloves protects against latex allergies and offers a chemical accelerator-free alternative.

Introducing our newest latex-free, powder-free surgical glove, Derma Prene® IsoTouch™ and Derma Prene® IsoTouch™ Micro. Ansell’s polyisoprene formulation provides the same comfort, fit and feel as natural latex rubber and provides protection against Type I latex allergy.

Be ultra safe with Ansell’s latex-free and accelerator-free surgical glove, Derma Prene® Ultra. Ansell’s neoprene formulation contains no chemical accelerators, eliminating the risk of both Type I and Type IV allergies.

And our latex-free surgical gloves have our SureFit Technology—an Ansell exclusive! They’re simply the best latex-free surgical gloves in the market.

For samples and more details, contact Ansell Customer Service at infoclientcanada@ansell.com or 1 800 363-8340

Ansell is the only major surgical glove manufacturer that offers surgical gloves that protect against both Type I and Type IV allergies.

Ansell, Derma Prene, and IsoTouch are trademarks owned by Ansell Healthcare Products LLC or an affiliate. ©2008 All Rights Reserved.
4th ANNUAL RUN FOR IFIC
— Fun 5Km RUN and 2.5Km WALK

Monday, May 11, 2009 – 6:30 a.m.
(No rain date)
Starting Point and Route to be announced
Hosted by CHICA Newfoundland Labrador
In support of the IFIC* Scholarship fund
*International Federation of Infection Control

Please help support IFIC in its effort to support Infection Prevention and Control Professionals. Collect sponsors and then come and run or walk with us on a picturesque route through St Johns. Registration will be at the Delta St. Johns (look for the CHICA Newfoundland Labrador booth near the Registration area). Starting point and route to be announced.

The 2009 Run or Walk for Fun is in aid of the International Federation of Infection Control Scholarship Fund which assists Infection Control Professionals from under-funded or under-resourced countries to attend the annual IFIC education meeting.

Prizes will be awarded for fastest male and female, and fastest ICP and M.D. There will also be a prize for the person who raises the most sponsorship dollars. Help us reach our goal of $2,500.00.

Entry fee and sponsorship will be paid at the conference. Do not send with your conference registration. The cost is 25$ for runners and walkers. All participants will receive a race t-shirt.

When collecting sponsorship for your run or walk, please present the total sponsorship by way of a cheque made payable to CHICA-Canada. Sponsorship monies and sign up forms will be collected at race registration. A sponsorship form is attached. Sponsors will be provided with a charitable receipt from CHICA-Canada.

Participants will be required to sign a liability waiver at time of registration. Medical assistance and water will be available en route. Participants are responsible for ensuring their own health and safety while on this run.

For more information, contact CHICA-Canada
Telephone 1-866-999-7111 or email chicacanada@mts.net

This event is approved by the City of Montreal and adheres to all City by-laws.

THANK YOU FOR YOUR SUPPORT!

Name of Runner ____________________________
Telephone Number _________________________

NAME (Please Print) ADDRESS TELEPHONE PLEDGE PAID

Community and Hospital Infection Control Association – Canada
Association pour la prévention des infections à l’hôpital et dans la communauté – Canada

PO Box 46125 RPO Westdale, Winnipeg MB R3R 3S3
Courier Address only: 67 Bergman Crescent, Winnipeg MB R3R 1Y9
Telephone: 1-204-897-5990/1-866-999-7111 Fax: 1-204-895-9595
Email: chicacanada@mts.net http://www.chica.org
CHICA-Canada Charitable # 11883 3201 RR0001
Fecal incontinence is a significant problem in the critical care setting, where it can expose patients and clinicians to potentially infectious stool, lead to pressure ulcers, and contribute to economic burden.

In an independent study, combined mean bed linen and dressing changes due to fecal incontinence were reduced 79% when using the ActiFlo Indwelling Bowel Catheter.1

Reliable protection helps improve patient outcomes. For more information, contact your Hollister sales representative today or visit www.Hollister-ActiFlo.com.

Caution: Federal (USA) law restricts this device to sale by or on the order of a physician. Prior to using the ActiFlo Indwelling Bowel Catheter System, be sure to read the entire ActiFlo Indwelling Bowel Catheter System Instructions for Use package insert supplied with the product for device Intended Use, Description, Contraindications, Warnings, Precautions, Adverse Events, and Instructions For Use.

Hollister and logo, ActiFlo and “Attention to Detail. Attention to Life.” are trademarks of Hollister Incorporated. Covered under one or more of the following patents: US Patents 5569216, 7147627, Australian Patents 2003207608, 2006274375, Canadian Patent 2421405 and other patents pending.

© Copyright 2009, Hollister Incorporated.
INTRODUCING !!!
A COMPACT LOW TEMPERATURE STERILIZER

MEETING THE UNIQUE NEEDS OF HOSPITALS AND CLINICS

STERRAD® NX™ Sterilization System

With over 230 STERRAD® sterilizers installed across Canada, ADVANCED STERILIZATION PRODUCTS, a unit of Johnson & Johnson Medical Products is pleased to present the STERRAD® NX™.

Equipped with the same patented low temperature sterilization technology for heat and moisture sensitive items such as flexible endoscopes and rigid telescopes, the compact STERRAD® NX™ also allows for portability at a fraction of the price. The STERRAD® NX™ is fast and delivers wrapped, sterilized product in less than 40 minutes with no health risk to your staff or harmful emissions into the environment.

The Time Has Come. Low temperature sterilization can be FAST, EASY, SAFE, PORTABLE and AFFORDABLE, all at the same time.

FOR MORE INFORMATION ON THE STERRAD® NX™
PLEASE CONTACT YOUR ASP REPRESENTATIVE

Advanced Sterilization Products
Western/Atlantic Provinces: 1-800-668-9045
Ontario: 1-800-268-5577
Quebec: 1-800-668-9067
Toronto: 905-946-9501
STERRAD® NX™ is a registered trademark

Johnston & Johnson
Medical Products
A Division of Johnson & Johnson, Inc.
ORAL PRESENTATIONS

TUESDAY, MAY 12/WEDNESDAY, MAY 13, 2009 – 2:00 P.M.-3:00 P.M.

DELTA ST. JOHN’S (ROOM TBA)

REDUCING THE RISK ASSOCIATED WITH ALCOHOL BASED HAND RUB (ABHR) IN MENTAL HEALTH

Keith Sopha, Jill Richmond, Norma Richards; Homewood Health Centre, Guelph, Ontario, Canada

Issue: There are many challenges associated with alcohol based hand rub (ABHR) in Mental Health Facilities. An incident of infection occurred involving an unsecured bottle of ABHR.

Project: As a result of the incident, a multidisciplinary team was established to identify and address all concerns related to ABHR in the facility. Point of care is very different as patients are mobile and not always treated within a typical healthcare bed space. Patient to patient transmission is more of a concern because of mobility and requires different strategies. As well, safety concerns related to misuse by ignition. Facilities with addictions programs need to consider the triggering effects of ABHR. Special consideration is also required in high risk mental health units.

Results: The team implemented a change from gel products to foam, as it was felt that foam would be less likely to be ingested in large quantities. Unsecured bottles were replaced with wall mounted, secured dispensers. The number of dispensers was substantially increased making it more accessible at point of care. Service providers on high risk units were issued pocket sanitizers. An auditing system to monitor usage was established by collecting returned empty cartridges. Portable, touchless ABHR stands are now available for placement outside isolation rooms and during outbreaks.

Lessons learned: We experienced an unfortunate incident involving arson to one of the wall mounted dispensers. The ABHR ignited easily and resulted in some reassessment of ABHR dispensers. The multidisciplinary team approach and involving front line staff from all departments during the product evaluation/selection process helped with product acceptance and change. The ABHR project created a new project of glove selection, use and training.

LINKING THE placement OF ALCOHOL HAND SANITIZER (AHS) DISPENSERS TO YOUR FACILITY’S HAND HYGIENE STRATEGY, A SYSTEMATIC APPROACH

Ted Pincock, Daphne Murray; Capital District Health Authority, Halifax, Nova Scotia, Canada

Issue: Health care facilities across Canada have adopted a national initiative, the “4 Moments for Hand Hygiene”, to improve hand hygiene compliance among healthcare workers. We describe the impact of a change in supply contracts for alcohol hand sanitizer (AHS) during the implementation of a new district wide hand hygiene campaign, reviewing its challenges and opportunities.

Project: A well-planned and well-executed installation of hand hygiene products is an essential step in any program to enhance hand hygiene adherence in healthcare settings. AHS dispensers act as visual cues for hand hygiene behavior, and their strategic and uniform placement ensures the product highly accessible for frequent use. Does this fact offer an opportunity to integrate the national hand hygiene campaign “4 Moments for Hand Hygiene” into a strategy for dispenser placement in all areas of the healthcare spectrum?

Results: Based on our experience, we enumerate strategies to avoid logistical difficulties, integrate dispensers with the current hand hygiene program, and amplify the positive momentum gained through the installation of a new AHS dispensing system.

Lessons learned: We suggest steps to performing dispenser needs assessments, developing dispenser placement guidelines, setting down rules for the installers, and linking the installation process to a hand hygiene program. A Pre-installation Matrix is also provided to assist practitioners prepare and communicate a thorough systematic approach.

CHALLENGES TO IMPLEMENTING A DAILY FEBRILE/ENTERIC SURVEILLANCE FORM AS A PATIENT SAFETY TOOL IN A MENTAL HEALTH CENTRE

Jo-Anne Burt, Darlene Fawcett, Linda Fletcher; Whitby Mental Health Centre, Whitby, Ontario, Canada

Background: Patient care units reported infections to Infection Control at month ends and completed FRI screening on admission. With a mental health focus, there was no daily FRI assessment. IPAC staff was contacted when multiple patients were showing similar symptoms and mental health programs were impacted. The need for a patient safety tool that was user friendly and identified patients with potential infections was necessary. The tool would provide information to prevent transmission and outbreaks.

Development of a tool: A form was developed using the basic assessment tool appendixed in the FRI document (PIDAC 2006). We added other physical symptoms to the tool that could help identify early stages of respiratory illness or gastro. A column for visual assessment by staff was added for patients who were unable/unwilling to respond to questions. After education of managers and staff, the new daily surveillance tool was implemented February 1, 2008.

Challenges: Implementation of the daily tool was perceived as an additional task by nursing staff. Staff expressed objections “we are mental health and not acute care”. Staff lacked computer skills and or access to a computer and the form was designed to be available on the intranet.

Conclusion: With ongoing support from IPAC, the daily surveillance tool compliance rate for the first year is > 75%. The implementation of this tool allows IPAC to implement prevention recommendations to prevent transmission of HAIs. Despite initial resistance, the daily febrile/enteric surveillance form has become a most effective working tool.

CHICA-MENTAL HEALTH INTEREST GROUP REPORT: PRELIMINARY FINDINGS ON CURRENT IPAC PRACTICES

Rebecca Yu, Robert Nguyen, Vytas Velvys; CHICA-Mental Health Interest Group, Co-Chair, Canada; Whitby Mental Health Centre, Whitby, Ontario, Canada

Background: CHICA-Canada Mental Health Interest Group (MHIG) was established to support members interested in infection prevention and control in mental health settings. Members often express the lack of publications and references for their unique patient population IPAC programs. Because of this there is a need to establish the Best Practices/Position Statement.

Project/Method: CHICA-MHIG has set out a 6 stage plan working towards a Best Practices/Position Statement. In Nov. 2008, Stage 1 was launched. The objective was to establish current data on staff ratios, surveillance programs, admission screening protocols, immunization program, hand hygiene program, physician support, signage, fixation behavior and guidelines/standards currently used. A 36-item questionnaire was sent out to 32 facilities across the country. Of the 36 questions, 21 were closed-ended, 15 were open-ended.

Result: 15 out of 32 (47%) facilities responded, with the majority from Ontario. The average number of beds across the facilities was 215 with an average of only 1.1 infection control practitioner. Surveillance programs were in place at 9 of the 12 sites. 12 facilities screen for MRSA and 10 screen for VRE upon admission. Most had a written hand hygiene policy and referred to the PIDAC and APIC for their surveillance and IPAC programs. About a third of the facilities did not have an infectious diseases physician.

Lessons learned: Feedback shows that a more user friendly questionnaire is needed for the next round of survey which will be extended to regional mental health settings. This presentation will share the initial data collected so far for this project.

LIGHTS, CAMERAS, ACTION! CREATING AN EDUCATIONAL VIDEO ABOUT THE PROPER USE OF PERSONAL PROTECTIVE EQUIPMENT IN LONG-TERM CARE

Tim Cronberry, Christine Moussa; South Western Ontario Infection Control Network, St. Marys, ON, Canada

Video resources outlining the proper use of personal protective equipment (PPE) are often tailored to the acute care setting. Staff in long-term care (LTC) are at a disadvantage because few Infection Prevention & Control (IPAC) learning resources are geared specifically to their setting.

Principles of adult learning suggest that adults prefer resources that are applicable to their current experiences and that the use of humour can be an effective means of engagement. IPAC education videos often do not incorporate these principles.

The South Western Ontario Infection Control Network created a professionally produced 15 minute video targeted to LTC addressing PPE use. The video was filmed in a long-term care home and depicts scenarios staff would encounter. The video was distributed to approximately 2000 stakeholders in Ontario. The package included a DVD, teaching guide, and CD containing companion resources. The resource was marketed as an “in-service in a box”.

Feedback to date has been outstanding. Although the resource has been created and marketed for LTC, acute care settings, LTC community agencies have requested and used the video. A formal evaluation of the resource package will be conducted in early 2009. Healthcare workers are constantly faced with competing messages. Humour is an effective means of engaging an adult audience, and cutting through message clutter. In addition, creating resources that are sector specific increases the applicability of the messages, in turn augmenting the viewer’s learning experience.

IMPACT OF HAND HYGIENE (HH) COMPLIANCE ON A NOROVIRUS OUTBREAK IN A LONG TERM CARE HOME (LTC)

Olivia Yow, Sandra Callery, Mary Vearncombe; Sunnybrook Health Sciences Center, Toronto, Ontario, Canada

Background/Objectives: Norovirus outbreaks are common in LTCs. Norovirus is highly infectious and is transmitted via the fecal-oral route, including by contaminated hands. In January 2009, a norovirus outbreak was observed in our hospital’s 535-bed LTC. We examined the impact of HH compliance on a norovirus outbreak in our LTC. Methods: HH compliance was collected using standardized, validated audit tool prior to the outbreak. During the outbreak, resident and staff cases were followed. Attack rates (AR) for all outbreak-affected units were calculated. Linear regression analysis was used to calculate the relationship between IPAC compliance rate and unit AR for all affected units.

Results: The outbreak involved all 9 wards within one building and lasted 34 days. 111 people were affected, 72 residents and 39 staff. The mean ward AR was 18% (range 1-51%): mean resident - AR was 27% (range 0-80%) and mean staff - AR was 12% (range 0-47%). Mean ward HH compliance rate was 51% (range 12-81%). Individual ward HH compliance rate and AR were inversely related: the higher the ward HH compliance rate, the lower the ward AR. The relationship is statistically significant (p=0.001).

Conclusions: HH compliance rate may be used as an indicator to predict the impact of a norovirus outbreak. Improving HH compliance in LTCs may decrease the impact of norovirus outbreaks.
LONG-TERM CARE REGISTERED NURSES’ PERCEIVED BARRIERS AND FACILITATORS TO IMPLEMENTING INFECTION CONTROL BEST PRACTICES
Anne Balachowskii, Regional Infection Control Networks, Dundas, ON
The purpose of this paper was to describe the perceived barriers and facilitators to implementing infection prevention and control best practices. Three focus groups composed of long term care professionals from southern Ontario were conducted. A researcher-developed semi-structured focus group guide adapted from the Barriers Scale was utilized and barriers and facilitators were identified using a conceptual mapping grid. The data was developed from question to question and across questions, and the barriers and facilitators were identified. Participants perceived key barriers to implementing infection prevention and control best practices were role design, staffing shortages, best practice document design, and long-term care facility design. The key facilitators identified were administrative support and connections to external networks.

ANTIBIOTIC RESISTANT ORGANISMS AND ANTIBIOTIC PRACTICES IN CANADIAN LONG-TERM CARE FACILITIES: FOCUSING ON THE RELATIONSHIP OF INFECTION SURVEILLANCE AND CONTROL ACTIVITIES AND ANTIBIOTIC PRACTICES WITH MRSA RATES
Dick Zoutman1, 2, B. Douglas Ford, 3, Jim Caithamer1
1Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada, 2Infection Control Service, Kingston General Hospital, Kingston, ON, Canada, 3Infection Control Service, Providence Care, St. Mary’s of the Lake and Mental Health Services, Kingston, ON, Canada
Background: Long-term care facility (LTCFs) residents are at risk from AROs. The examination of the relationship of infection surveillance and control activities and antibiotic practices with MRSA will identify strategies to manage AROs in LTCFs.
Methods: A survey was conducted across 2009 to all Canadian LTCFs to assess infection surveillance and control resources and activities (In Press). Items assessing antibiotic use practices and AROs were included in the survey. Regression analyses were used to examine the association of infection surveillance and control activities and antibiotic practices with MRSA rates.
Results: One third of LTCFs responded (34%, 488 of 1458). The mean MRSA rate was 0.8 (SD 1.3) per 10,000 patient days, mean C. difficile rate was 0.3 (SD 0.4), mean VRE rate was 0.06 (SD 0.2), mean ESBL-E. coli rate was 0.9 (SD 2.2), and mean ESBL-klebsiella pneumoniae rate was 0.5 (SD 1.2). 47% of LTCFs reviewed antibiotic prescribing. A quarter (25.1%) have minimum criteria for initiating antibiotics for respiratory infections. Residents with asymptomatic bacteriuria received antibiotics more than half the time in 31.9% of LTCFs. Few LTCFs (11.8%, 50 of 422) developed antibiotic resistance pattern summaries. Surveillance index scores (r=-0.21, P=0.01), resident morbidity (r=0.15, P=0.02), and antibiotic practices scores (r=0.16, P=0.02) were associated with higher MRSA rates.
Conclusion: Infection surveillance activity was associated with lower MRSA rates. There is need for further investment in infection control to protect vulnerable LTCF residents. The authors have reported elsewhere surveillance in Canadian LTCFs does not meet recommended levels.

Tuesday, May 12, 2009
Salon C, Acute Care
THE IMPACT OF PEER ADMINISTRATION ON HEALTHCARE WORKER INFLUENZA VACCINATION RATES
Victoria R Williams, Wendy Morgan, Sandra Callery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
Background: Yearly influenza vaccination is recommended for all healthcare workers (HCWs) who have active contact to protect patients and prevent transmission. In order to achieve adequate HCW influenza vaccination compliance a multifaceted strategy is necessary. The objective of this study was to determine the impact of peer administration of the vaccine to the annual influenza vaccination campaign increased HCW compliance.
Methods: During the 2008-09 influenza season a HCW vaccination strategy was rolled out facility-wide that included management support, staff education, promotional materials, and ready access to the vaccine.
Results: The mean increase in HCW compliance with influenza vaccination from 2007-08 to 2008-09 was 15.5% for the P&G program as compared to 8.3% for the remainder of acute care programs (P=0.25). Comparison of the P&G program to elective orthopaedics, both programs that are located offsite and have similar access to occupational health and safety, demonstrated a significant mean difference in HCW immunization compliance (23.7%, 95% confidence interval 6.8-40.6, t=-0.012).
Conclusion: Peer administration has the potential to increase HCW compliance as one component of a facility-wide influenza vaccination strategy.

ACCESS YOUR SURVEILLANCE DATA MORE EASILY WITH MS-ACCESS®
Marion Yetman1, Paula Price1, Jeff Boone2, Dana Malone2, Kelly But2
1Department of Health & Community Services, St. John’s, NL, Canada, 2Western Health, Corner Brook, NL, Canada
Issue: One of key components of an infection control program is the collection and analysis of surveillance data. Management of the data has plagued ICPs who often have limited expertise in the area of information technology. This report describes the process of the development of an ACCESS® database for ICPs’ surveillance data requirements.
Project: The Provincial Infection Control (PIC- NL) group met in 2007 and identified MRSA and SSIs surveillance as priorities for focused surveillance. A decision was made to have the Information Technology (IT) write a program specifically designed for data management of the surveillance projects. In addition to the IT experts, the design process required the involvement of ICPs, an epidemiologist, a privacy analyst and IT support in the regional facilities. A protocol was written to ensure consistency in the data collection requirements and the database was created using MS ACCESS® and included 3 parts: data entry, reports and charts.
Results: In November 2008 the database was deployed to the Western region as a pilot project. An orientation was provided via teleconference to the ICPs and IT support staff.
Lesson learned: The project was much larger in scope than anticipated. The delays in the process were frustrating for the development team and the users waiting for the product. It is challenging to develop a database to meet the needs of four different regional infection control programs. However, feedback from the ICPs included enthusiasm and satisfaction with the database making it a worthwhile initiative.

ACCREDITATION CANADA: SERVICE EXCELLENCE STANDARDS FOR REPROCESSING AND STERILIZATION OF REUSABLE MEDICAL DEVICES
Micheile G. Hansen, Accreditation Canada, Ottawa, Canada
Accreditation Canada, formerly known as the Canadian Council on Health Services Accreditation, is a national, non-governmental, not-for-profit body that accredits health care organizations across Canada. Through accreditation, organizations evaluate and improve the quality of the services they provide. The accreditation process includes examining data, activities and services and comparing them to standards of excellence. Accreditation Canada’s standards of excellence cover more than 25 healthcare and service areas. Responding to requests from organizations across the country, Accreditation Canada in partnership with the Canadian Standards Association began developing accreditation standards for Reprocessing and Sterilization of Reusable Medical Devices in the fall of 2002. As part of a multi-year accreditation program, these sterilization standards will be in use by organizations in 2009. The presentation will inform attendees of the history behind the development of these standards, provide an outline of the Reprocessing and Sterilization of Reusable Medical Devices standards, share general findings of survey visits to date and will provide updates in relation to sterilization.

TIME IS MONEY. DOES PROPHYLACTIC ANTIBiotic TIMING (PABT) AFFECT HIP AND KNEE JOINT REPLACEMENT SURGICAL SITE INFECTION (SSI) RATES?
Diane Weirweum, Kristyna Ostrowska; Trillium Health Centre, Mississauga, Canada
Objective: Surveillance of post-op SSIs and correct PABT was conducted from November 1, 2004 to June 22, 2007 on 643 elective hip and 1,331 clean elective knee joint replacement patients. SSI data was compared to the National Healthcare Safety Network (NHSN) Report, 2008.
Method: AICE (Automated Infection Control Expert) was interfaced with the operating room’s program to download data which the Infection Control Practitioner (ICP) used to generate a record on every patient. The record includes patient and surgical information, wound classification, surgery start time, and stop times, American Society of Anaesthesiologists (ASA) score, prophylactic antibiotics and time. AICE calculates the composite index (0,1,2,3) for predicting the risk of the patient developing a SSI after surgery. CDC (Centre for Disease Control) definitions for SSIs were followed and ratios compared to NHSN. Surveillance includes 30 days post-op for superficial SSIs and 1 year for deep, organ/space SSIs. AICE recovered microbials surveillance and post-discharge feedback.
Results: The hip and knee SSIs rates detected in hospital were comparable to NHSN rates. Comparing in-hospital plus post-discharge SSIs from 2004-2007, hip SSIs rates were 3.9%, 0.5%, 3.0% and correct PABT started in 90%, 92%, 96% cases respectively. Comparing in-hospital plus post-discharge SSIs from 2004-2007, knee SSIs were 2.8%, 2.8%, 2.6% and correct PABT started in 90%, 93%, 96% cases respectively.
Conclusion: The additional 8 hip and 25 knee SSIs detected post-discharge suggests that a more active post-discharge surveillance is necessary for accurate rates. In our study overall SSIs rates decreased and correct PABT improved. PABT is a key component of perioperative care.

Tuesday, May 12, 2009
Salon F, Pediatrics
SERRATIA MARCESCENS (SM) OUTBREAK IN A NEONATAL INTENSIVE CARE UNIT (NICU) RELATED TO THE EXIT PORT OF HIGH FREQUENCY OSCILLATORY VENTILATION (HFOV)
Tracy M. Macdonald1, Joanne M. Langley1, Timothy Mailman2, Kim Allain1, Michael Muley1, Dora Stinson3, George Nelson1
1IWK Health Centre, Halifax, Nova Scotia, Canada, 2National Microbiology Laboratory, Winnipeg, Manitoba, Canada, 3Dalhousie University, Halifax, Nova Scotia, Canada
Background: SM is known for its role in NICU nosocomial infection. We report an outbreak thought to be related to aerosols from the HFO exit port of a colonized infant.
Methods: The level 3 NICU’s outbreak unit is a 1067 feet space divided into three pods. The index case was <1500 g premature infant with respiratory tract colonization.
Because of the morbidity associated with SM Infection Control placed the patient on contact isolation.[1] Three weeks later a second colonized infant who had spent 48 hours in the NICU was found. Over the ensuing months 5 more infants were identified and placed on CI. A line listing showed the only common risk factor was residency in the same pod. The unit was closed to further admissions. All children were placed on CI. A multidisciplinary team gathered and multiple (n = 16) environmental samples were taken. A small puddle of water directly under the HFO exit port was noted and sampled. Samples positive for SM were processed according to the CDC 1 day E. coli pulsed field gel electrophoresis protocol at the National Microbiology Laboratory, Winnipeg.

Results: One patient (A1) was colonized (n = 5) or infected (n = 2). Of the 5 environmental samples, only the HFO exit port of the index case grew SM. This isolate and that of the index case were genotypically identical. Two of the clinical specimens were identical (A1); three more were related (A2-A3). Conclusions: A SM outbreak was terminated through a combination of CI, education, increased hand hygiene, closing the unit, and retrofitting of the exit port of HFO. We hypothesize that small particle aerosols generated by the HFO may have dispersed the organism and facilitated patient-patient and HCW-patient spread.

HAND HYGIENE IN THE NICU: WHERE DOES THE BABY’S ENVIRONMENT END AND NICU SPACE START?

Anna O’Shaughnessy, Edmond Kelly, Karel O’Brien, Ann Tozer, Rheney Castillo, Mary Ann Tomek, Lidai Xshaholi, MSH NICU Infection Prevention and Management Committee, MSH Infection Control Team

Mount Sinai Hospital, Toronto, Ontario, Canada

Issue: Hand hygiene is an important measure to prevent the spread of hospital acquired infections. Initial adherence to the “4 moments” of hand hygiene audits in our neonatal intensive care unit (NICU) was 59%. Follow up discussions identified that application of the 4 moments in the NICU provided a unique challenge because the physical environment within and surrounding the islette made it difficult to define what constituted the “patient environment”.

Project: A multi-disciplinary group reviewed the 2007 hand hygiene results during education sessions and determined that there was uncertainty about what constituted the patient’s environment in our open concept NICU. Patient care scenarios were developed and clear definitions for “baby space/environment” and “NICU space/environment” were developed. Two hand hygiene reference documents specific to the NICU were developed. One detailed the process for hand hygiene in the NICU and the other included scenarios to demonstrate application. Follow up education and feedback sessions will be conducted incorporating the new definitions and reference documents will be distributed.

Results: Clearly defining the “patient environment” in the NICU through consultation and feedback provided clarity to the staff on when to perform hand hygiene. Adherence to hand hygiene improved to 68% in 2008.

Lessons Learned: In at least some specialty care and open concept care areas, teaching hand hygiene by the “4 moments” requires clear, accepted and well-understood definitions of patient vs hospital environment. Feedback from the multidisciplinary team is helpful in clarifying definitions and improving hand hygiene adherence.

DELEGATES FOR INFECTION CONTROL: FOSTERING AN INFECTION PREVENTION AND CONTROL CLIMATE

Lynne St-Martin, McGill University, Montreal, Quebec, Canada

The Infection Control Practitioner’s (ICP) role is a complex and challenging one. To diffuse information to all health care workers of a hospital requires much creativity. Our ICP team needed to identify and train Delegates for Infection Control to act as role models and to diffuse IPC information.

The ICP from this tertiary care hospital envisioned one Delegate for Infection Control from each patient care unit. Several steps were undertaken to define and expand their role: developing a mandate for the Delegates for Infection Control, obtaining buy-in from hospital administrators, describing the roles and responsibilities, officialsizing the function of this working group, offering train-the-trainer sessions and creating and distributing “Infection control toolkits”.

The sum of the actions undertaken has contributed to the success of this project. The educational sessions have given the Delegates a sense of confidence in their ability to act as role models, which has fostered a sense of ownership for issues related to IPC. The most impressive result is that unit specific initiatives have been proposed and organized by Delegates. This has created a positive influence on all health care workers and has shifted the focus from preventing infections rather than controlling them.

To foster an IPC climate within a hospital requires time and energy. In a hospital with 1.5 ICPs, Delegates for Infection Control are essential to become the ears and eyes of the ICP and to become role models amongst their peers.

AN OUTBREAK OF CA-MRSA 10 INVOLVING NEWBORNS AND PARENTS ASSOCIATED WITH A COLONIZED HEALTHCARE WORKER.

Jo-Anne McConnell1, Paul Dick1, Elizabeth Gregg1, Michael Gardam1

1Grey Bruce Health Services, Owen Sound, Ontario, Canada, 2University Health Emergency Departments asking them to identify clinical cases of MRSA in newborns or between February and August 2008.

Introduction:

We identified 3 previously admitted newborns with MRSA infections between February and August 2008. Concurrently, infection control was contacted by physician’s offices regarding other clinical cases. There was concern of an outbreak, however no baseline data existed for comparison.

Methods: An outbreak committee was struck and expert advice was sought. We conducted a look back study by contacting internal and external physicians and Emergency Departments asking them to identify clinical cases of MRSA in newborns or their families, and to culture newborns born after February 1 2008 for MRSA. An active admission and discharge surveillance program was instituted on the affected unit. All unit staff and physicians were screened for MRSA. The unit was terminally cleaned, visitors restricted, contact precautions used for all patients, and education provided to staff.

Results: Between February 1 and December 1 2008 we identified 25 infants (16 colonized, 9 infected); 10 mothers (4 colonized, 6 infected); 2 fathers (2 infected); and 1 healthcare worker (colonized). Molecular fingerprinting revealed that 16/37 cases and the healthcare worker had an identical CA-MRSA 10 strain. Review of staff assignments revealed that the colonized healthcare worker was in contact with 88% of affected mothers and babies. The outbreak ceased when the healthcare worker stopped working, recurred upon return, and stopped again when they left on sick leave.

Conclusions: This outbreak was environmentally and temporally associated with a colonized healthcare worker. Staff screening was a very important measure in identifying and halting this outbreak.

Wednesday, May 13, 2009

Salon E, Alternate Groups/Settings

TO BOLDLY GO WHERE NO MAN HAS GONE BEFORE: AUDITING REPROCESSING PRACTICES IN PHYSICIAN OFFICES: THE ALBERTA EXPERIENCE

Tracey Lulhkey1, Susan Lafferty2: 1College of Physicians and Surgeons of Alberta, Edmonton, AB, Canada, 2Regional Infection Prevention and Control Program, Alberta Health Services, Edmonton, AB, Canada

Issue: In response to concerns about breaches in infection control, Alberta’s government ordered each professional regulatory College to ensure that its members practice in accordance with accepted infection control practices.

Project: Following dialogue with the Provincial Medical Officer of Health about priorities, the College of Physicians and Surgeons established an Infection Prevention and Control Advisory Committee, created an awareness campaign for physicians and initiated inspections of offices in regards to the cleaning, disinfection and sterilization of reusable medical equipment.

The College began inspecting office reprocessing practices in April 2008. As of February 2009 the College has contacted 2600 specialists and has inspected 158 offices. The next round of office inspections to begin in the summer of 2009 will involve over 3,000 family practitioners and will likely result in an additional 200 offices for inspection.

Results: Results of the 158 office inspections revealed that deficiencies were common and included a lack of documented policies, procedures and training protocols, biological monitoring, appropriate rinsing following HLD and wearing required PPE.

Lessons Learned: The feedback from physicians about our audit and education program has been encouraging. Out of the first 55 offices surveyed 44 offices have resolved deficiencies and continue to reprocess, and the remainder either chose to use disposable devices (6), outsourced reprocessing (2) stopped procedures (2) or retired (2). Our major challenge remains the urgent need for ongoing education for physicians and healthcare workers who reprocess.
OUT OF THE BASEMENT: CERTIFIED MEDICAL DEVICE REPROCESSING TECHNICIAN (CMDRT) PERSONNEL CERTIFICATION PROGRAM

Miles Murphy1, Susan Lafferty2. Canadian Standards Association, Mississauga, ON, Canada, 1Regional Infection Prevention and Control Program, Alberta Health Services, Edmonton, AB, Canada

Issue: Recent adverse events in delivery of health care have highlighted improper cleaning, disinfection and sterilization of reusable medical devices that have potentially exposed patients to infection. Lack of a Canadian certification process to ensure competency of medical device reprocessing staff has been noted as a contributing risk factor.

Project: To mitigate risk, Canadian Standards Association (CSA), an organization with expertise in personnel certification, moved forward with developing a national personnel certification program. November, 2008. A certification scheme committee, representing a broad range of stakeholders from across Canada, worked closely with CSA to steer the development of a robust certification to meet the requirements of ISO 17024 for independent, third party and neutral certification of medical device reprocessing technicians (MDRT). The program is intended to: (1) Promote public health by improving safety of medical devices (2) create a national standard of practice for Canadian MDRT personnel (3) lend credibility and authority to MDRT personnel while meeting needs of industry and regulators for relevant, standardized training (4) reduce number of hours needed for on-the-job training.

Results: The program is scheduled to be launched in the spring of 2009 and represents the first Canadian national certification program for eligible personnel who reprocess reusable medical devices.

Lessons Learned: A significant number of stakeholders from health care, industry and ministries of health were willing to volunteer their time and expertise in the development of this much-needed certification process. The role of CSA in managing and facilitating the process cannot be underestimated.

EMPLOYING AN ESTABLISHED TRAINING MODEL TO INTRODUCE ROUTINE PRACTICE AND INFECTION CONTROL TO POLICE OFFICERS IN LARGE MUNICIPAL SERVICE

Natalie Hill1, Alexis Silverman2. Peel Regional Police Service, Brampton, Ontario, Canada, 1Peel Public Health, Brampton, Ontario, Canada

Issue: Peel Regional Police Service is the 3rd largest municipal service in Canada with more than 1,800 front line officers responding to over 250,500 calls annually. The region consists of Brampton & Mississauga, which are home to over 1.2 million residents. Due to the substantial diversity of the Region and the nature of policing itself, Peel Police Officers are frequently required to interact with individuals who may put them at risk of exposure to communicable diseases. Despite this danger, there is no requirement to provide infection control.

Project: The “Personal Protection Strategy, (PPS) Model” was developed in collaboration with Peel Public Health to teach routine practice and infection control in a way that was readily accessible to Police Officers.

Results: The PPS model incorporates the design and colour-scheme of the Ontario Ministry of Community Safety and Correctional Services’ Use of Force model, which is well known and widely accepted training tool for assessment of physical risk. The PPS Model has Officers use the same critical thinking that allows them to assess and avoid physical risk, and apply it to communicable disease. Thirty randomly-chosen Officers evaluated the model, using questions designed to assess it’s effectiveness in introducing the concepts of Basic and Infectious Control. All Officers questioned stated that the model and its concepts were useful, important and readily adaptable and provided training to Police on infection control.

Results: Despite this danger, there is no requirement to provide infection control.

Conclusion: There is incomplete adherence to CVC insertion recommendations in participating ICUs. Practices vary between adult & pediatric/neonatal units and between attending physicians & housestaff. These practices likely mirror those in other Canadian ICUs. As process outcomes reflect clinical outcomes, ICU should formally assess CVC insertion practices and provide educational programs where indicated.

COORDINATING SURGICAL SITE SURVEILLANCE BETWEEN TWO HEALTH AUTHORITIES: LESSONS LEARNED

Leslie Forrester1, Janice Debeer2, Lisa Harris2, Missy Blackburn3, Elizabeth Bruce4, Vancaster Costal Health, Vancouver, British Columbia, Canada, 1Interior Health Authority, Kelowna, British Columbia, Canada

Introduction: Surgical site infection (SSI) surveillance is often inconsistent between facilities and health regions. This three month pilot project examined the feasibility of developing standardized surveillance methodology across two health regions.

Methodology: Traditional surveillance was already in place at Vancouver General, Kelowna General and UBC Hospitals. Standardized definitions and data fields for SSIs were developed as well as a common patient phone survey (PPS) form and a voluntary physician reporting (VPR) form.

Results: All three hospitals were readily able to standardize surveillance following the creation of a Steering Committee and fulfillment of Privacy requirements. Traditional surveillance identified 7 SSIs (26.9% total infections), compared to 5 by VPR (19.2%) and 19 by PPS (73%). PPS was labour intensive, overly sensitive (90% of patients contacted did not have a SSI) and was unable to distinguish between deep and superficial infections. However, it did identify infections not otherwise detected by other methods.

Conclusions: Standardized methodology is feasible between different health regions but requires considerable infrastructure support. Facilities should recognize that SSI surveillance is both an assessment of perioperative quality as well as an evaluation of the compliance of Standard Precautions and Infection Control. All infectious control programs must be vigilant to the site of surveillance, but requires significant infrastructure support.

WHAT’S THE “DIFF”?: SYNDROMIC SURVEILLANCE AND PROMPT IMPLEMENTATION OF ADDITIONAL PRECAUTIONS FOR DIARRHEA

Natalasha Vrbovnik, Sandra Callery, Mary Wearcombie; Sunnybrook Health Sciences Centre, Toronto, ON, Canada

Background: Published data shows an increase in the incidence and severity of C. difficile associated disease (CDAD). Environmental contamination plays a significant role in the transmission of C. difficile spores. Prompt initiation of Contact Precautions with a dedicated toilet for patients presenting with new onset of unexplained diarrhea is important to prevent the transmission of CDAD in healthcare settings. Sunnybrook Health Sciences Centre performs daily syndromic surveillance which includes diarrheal illness. A review of 2008 overall hospital data identified that 70% of patients/residents who were C. difficile toxin positive were placed on contact precautions at time of symptom onset. The remaining 30% did not have precautions implemented until toxin results were communicated. The delay in implementing appropriate additional precautions may contribute to the transmission of CDAD.

Project: A brief algorithm was developed outlining the steps to take when a patient/resident presents with new onset of diarrhea. Educational sessions were given to all staff nurses, a 36 bed trauma unit, utilizing case studies and a standardized stool chart, throughout September 2008.

Results: Compliance with the initiation of contact precautions based on symptom onset for CDAD patients increased from 25% to 100% after the educational intervention on the pilot protocol.

Lessons learned: When new onset of diarrheal illness is identified through syndromic surveillance, prompt action can prevent transmission. Providing an easy to use algorithm together with targeted education can facilitate prompt implementation of additional precautions until an infectious cause can be excluded through appropriate microbiological testing.
HERETICS AND LUNATICS IN INFECTION CONTROL HISTORY (AND WHAT WE CAN LEARN FROM THEM)

Paul Webber, Webster Inc., Belleville, ON, Canada

The history of infection prevention and control is littered with heresy and (apparent) lunacy. Among the legion of examples: Dr.'s Snow, Semmelweis, and Dacsbacher. John Snow's insistence that the contagion plaguing London of his day was the result of consuming contaminated water and the invisible creatures therein, rather than the widely accepted miasma theory, branded him a lunatic. Dr. Ignaz Semmelweis was not only considered a heretic and lunatic for his hand hygiene compulsion, he was ultimately driven to lunacy by ferociously intransigent opposition. And this practice continues even to modern times with Prof. Franz Dacsbacher's heretical precepts of environmentalism in infection control.

The history of infection prevention and control is littered with heresy and (apparent) lunacy. Among the legion of examples: Dr.'s Snow, Semmelweis, and Dacsbacher. John Snow's insistence that the contagion plaguing London of his day was the result of consuming contaminated water and the invisible creatures therein, rather than the widely accepted miasma theory, branded him a lunatic. Dr. Ignaz Semmelweis was not only considered a heretic and lunatic for his hand hygiene compulsion, he was ultimately driven to lunacy by ferociously intransigent opposition. And this practice continues even to modern times with Prof. Franz Dacsbacher's heretical precepts of environmentalism in infection control.

PARAINFLUENZA OUTBREAK INVESTIGATION IN A BONE MARROW TRANSPLANT UNIT (BMT)

Jose Shymanski, Jo Anne Janigan, Lothar Huelsch, Suzanne Madore, Kathryn Suh, Virginia Rohr

The Ottawa Hospital, Ottawa, Ontario, Canada

Background: Parainfluenza outbreaks in BMT recipients are associated with increased morbidity and mortality. Between July 26 and July 31 2008, parainfluenza was identified in three BMT patients admitted to our 24-bed BMT unit, prompting an immediate outbreak investigation.

Methods: Viralology results for the past 6 months were reviewed. Chart review was performed including culture screening for febrile respiratory illness. There was no history of exposure from national guidelines as well as common errors.

Results: Key issues with PPE identified include: noncompliance with recommendations, self-contamination when removing or wearing PPE, cross-transmission to the environment, skin/other reactions, and underutilization of hand hygiene. Five tools were developed: mask, respirator, gloves, gown, and goggles/face shield. Each tool consists of a performance checklist for donning, removal and wearing when providing care, questions to assess knowledge, and answers to the questions.

Conclusions: The PPE assessment tools are now ready to be used. These tools are applicable to students during basic education and practicing HCWs during orientation and in-service education.

A HUMAN FACTORS APPROACH TO HAND HYGIENE

Anjum Chaggar, Raquel Lopez, Carleenne Banez, Leah Gitterman

University Health Network, Toronto, ON, Canada

Hand hygiene, like many healthcare processes, is complex due to the number of factors involved. There are a number of physical tools required, diverse environments in which to perform these tasks, different groups of healthcare workers required to comply, each with highly differentiated work cultures, varying work processes and task requirements. Because of this complexity, hand hygiene lends itself well to a human factors analysis; that is, an analysis of the people, tools, environments and processes involved, in order to develop a system that enhances human cognitive and physical strengths and makes allowances for human limitations.

Methods: A multi-phased user-centered approach was undertaken to explore barriers and enable hand hygiene in diverse environments (rehab, family medicine, emergency and intensive care) for a number of healthcare workers (physicians, nurses, allied health, housekeeping, patient support workers). Observational studies, interviews, focus groups, and surveys were used to engage end users in solution development. Solutions were then validated through an environmental modification study, which sought to quantify the benefits of proposed solutions. This work was funded by the Canadian Patient Safety Institute.

CONCLUSIONS: This research highlighted the need to take into consideration the differences between healthcare workers, their environments and the tools they are provided when recommending solutions to barriers. Context specific recommendations resulting from this work will be formulated into a toolkit for dissemination by CPSI in April 2009.

MASTERS OF DISGUISE: CONDUCTING AN ANNUAL COVERT HAND HYGIENE AUDIT

Royal Alexandra Hospital, Edmonton, AB, Canada, 1Climere Rehabilitation Hospital, Edmonton, AB, Canada, 2Regional Infection Prevention and Control, Edmonton, AB, Canada

Issue: Performing hand hygiene audits on patient care units can be a challenge for infection control practitioners (ICPs). Selecting an appropriate method is important to conduct the audit in an unbiased manner. Using direct observation may inflate hand hygiene rates due to Hawthorne effect. An unobtrusive method is preferable to obtain accurate hand hygiene rates. A disguise is created allowing an observer to move freely on a nursing unit and monitor hand hygiene performance. This imaginative disguise always involves impersonating a staff member who would normally be present in a patient room. The disguise usually has a background story and on occasion has required a homemade prop to make the ruse more believable.

Project: The hand hygiene audit is a direct observational study whereby staff is unobtrusively observed by the same data collector. There is no interaction or immediate feedback provided to observed staff. This method eliminates the need for a disguise.

Results: The hand hygiene rates are provided to the infection prevention and control quality assurance committee, administration, and the management of the clinical areas.

Lessons Learned: Performing a yearly hand hygiene audit requires a great deal of planning, especially when creating an assumed identity is required. Hand hygiene campaigns are extended for various reasons. Rates are temporarily affected by hand hygiene campaigns. Deviating from a method that has been successful will lead to unusable data. Barriers to hand hygiene exist and need to be addressed. Utilizing a disguise is a good method to obtain true hand hygiene rates.

PARAINFLUENZA OUTBREAK INVESTIGATION IN A BONE MARROW TRANSPLANT UNIT (BMT)

Jose Shymanski, Jo Anne Janigan, Lothar Huelsch, Suzanne Madore, Kathryn Suh, Virginia Rohr

The Ottawa Hospital, Ottawa, Ontario, Canada

Background: Parainfluenza outbreaks in BMT recipients are associated with increased morbidity and mortality. Between July 26 and July 31 2008, parainfluenza was identified in three BMT patients admitted to our 24-bed BMT unit, prompting an immediate outbreak investigation.

Methods: Viralology results for the past 6 months were reviewed. Chart review was performed including culture screening for febrile respiratory illness. There was no history of exposure from national guidelines as well as common errors.

Results: Key issues with PPE identified include: noncompliance with recommendations, self-contamination when removing or wearing PPE, cross-transmission to the environment, skin/other reactions, and underutilization of hand hygiene. Five tools were developed: mask, respirator, gloves, gown, and goggles/face shield. Each tool consists of a performance checklist for donning, removal and wearing when providing care, questions to assess knowledge, and answers to the questions.

Conclusions: The PPE assessment tools are now ready to be used. These tools are applicable to students during basic education and practicing HCWs during orientation and in-service education.

A HUMAN FACTORS APPROACH TO HAND HYGIENE

Anjum Chaggar, Raquel Lopez, Carleenne Banez, Leah Gitterman

University Health Network, Toronto, ON, Canada

Hand hygiene, like many healthcare processes, is complex due to the number of factors involved. There are a number of physical tools required, diverse environments in which to perform these tasks, different groups of healthcare workers required to comply, each with highly differentiated work cultures, varying work processes and task requirements. Because of this complexity, hand hygiene lends itself well to a human factors analysis; that is, an analysis of the people, tools, environments and processes involved, in order to develop a system that enhances human cognitive and physical strengths and makes allowances for human limitations.

Methods: A multi-phased user-centered approach was undertaken to explore barriers and enable hand hygiene in diverse environments (rehab, family medicine, emergency and intensive care) for a number of healthcare workers (physicians, nurses, allied health, housekeeping, patient support workers). Observational studies, interviews, focus groups, and surveys were used to engage end users in solution development. Solutions were then validated through an environmental modification study, which sought to quantify the benefits of proposed solutions. This work was funded by the Canadian Patient Safety Institute.

CONCLUSIONS: This research highlighted the need to take into consideration the differences between healthcare workers, their environments and the tools they are provided when recommending solutions to barriers. Context specific recommendations resulting from this work will be formulated into a toolkit for dissemination by CPSI in April 2009.

MASTERS OF DISGUISE: CONDUCTING AN ANNUAL COVERT HAND HYGIENE AUDIT

Royal Alexandra Hospital, Edmonton, AB, Canada, 1Climere Rehabilitation Hospital, Edmonton, AB, Canada, 2Regional Infection Prevention and Control, Edmonton, AB, Canada

Issue: Performing hand hygiene audits on patient care units can be a challenge for infection control practitioners (ICPs). Selecting an appropriate method is important to conduct the audit in an unbiased manner. Using direct observation may inflate hand hygiene rates due to Hawthorne effect. An unobtrusive method is preferable to obtain accurate hand hygiene rates. A disguise is created allowing an observer to move freely on a nursing unit and monitor hand hygiene performance. This imaginative disguise always involves impersonating a staff member who would normally be present in a patient room. The disguise usually has a background story and on occasion has required a homemade prop to make the ruse more believable.

Project: The hand hygiene audit is a direct observational study whereby staff is unobtrusively observed by the same data collector. There is no interaction or immediate feedback provided to observed staff. This method eliminates the need for a disguise.

Results: The hand hygiene rates are provided to the infection prevention and control quality assurance committee, administration, and the management of the clinical areas.

Lessons Learned: Performing a yearly hand hygiene audit requires a great deal of planning, especially when creating an assumed identity is required. Hand hygiene campaigns are extended for various reasons. Rates are temporarily affected by hand hygiene campaigns. Deviating from a method that has been successful will lead to unusable data. Barriers to hand hygiene exist and need to be addressed. Utilizing a disguise is a good method to obtain true hand hygiene rates.

PARAINFLUENZA OUTBREAK INVESTIGATION IN A BONE MARROW TRANSPLANT UNIT (BMT)

Jose Shymanski, Jo Anne Janigan, Lothar Huelsch, Suzanne Madore, Kathryn Suh, Virginia Rohr

The Ottawa Hospital, Ottawa, Ontario, Canada

Background: Parainfluenza outbreaks in BMT recipients are associated with increased morbidity and mortality. Between July 26 and July 31 2008, parainfluenza was identified in three BMT patients admitted to our 24-bed BMT unit, prompting an immediate outbreak investigation.

Methods: Viralology results for the past 6 months were reviewed. Chart review was performed including culture screening for febrile respiratory illness. There was no history of exposure from national guidelines as well as common errors.

Results: Key issues with PPE identified include: noncompliance with recommendations, self-contamination when removing or wearing PPE, cross-transmission to the environment, skin/other reactions, and underutilization of hand hygiene. Five tools were developed: mask, respirator, gloves, gown, and goggles/face shield. Each tool consists of a performance checklist for donning, removal and wearing when providing care, questions to assess knowledge, and answers to the questions.

Conclusions: The PPE assessment tools are now ready to be used. These tools are applicable to students during basic education and practicing HCWs during orientation and in-service education.
OUTBREAK PEP RALLY: A GOOD COMMUNICATION TOOL
Stefanie Ralph; Norfolk General Hospital, Simcoe, Ontario, Canada

Issue: February 19, 2008 to April 14, 2008 Norfolk General Hospital (121 bed acute facility) experienced an outbreak of Vancomycin Resistant Enterococcus on the combined obstetrics, surgical, and medical unit (3B). A total of 31 hospital associated cases were identified. The magnitude of the outbreak affected staff in all departments. As the outbreak continued staff morale decreased and a need for further staff communication was identified.

Project: A pep rally was held for staff in the hospital cafeteria March 20, 2008. The pep rally included handmade signs that read “Go NGH” or “No VRE”, hand shaped noise makers, balloons, and streamers. Information was presented by the Vice President for Patient Care and Infection Control Practice. Messaging was brief with the focus on working together to bring the outbreak under control. The pep rally ended with a cheer “Help 3B, no VRE!” Breyers Unilever donated ice cream bars for all attending staff.

Results: This event had good local media coverage. McDonalds went on to deliver Egg McMuffins to all morning staff and cheeseburgers to all evening staff the next day. The commonplace in the hospital during this difficult time became known as the pep rally news story. Staff morale was noticeably improved and on March 31 it was identified that transmission had been contained and the 3B unit was reopened.

Lessons learned: Outbreaks are very stressful for all staff involved. Upbeat messaging, fun and silliness went a long way to keep up staff morale. Our organization would use this technique again in the future.

ADAPTING ONTARIO’S JUST CLEAN YOUR HANDS PROGRAM FOR LONG-TERM CARE HOMES
Claire Horsfield, Jo McCrret, Helen Sawick; Ministry of Health and Long-Term Care, Toronto, Canada

Issue: Hand hygiene is the single most important way to prevent infections and outbreaks in long-term care homes (LTC). To learn what adaptations should be made to the Ontario’s multi-faceted hospital hand hygiene program for LTC, stakeholder focus groups were used.

Project: Stakeholders indicated that LTC would require a training program that was accessible to individuals and groups without a dedicated trainer. Feedback demonstrated that implementing the “4 moments” for HH would require adaptation for shared activities. The materials adapted for LTC include; a DVD with different vignettes to show practical application of 4 moments in LTC with sections for the different staff groupings, volunteers and family; adapted 4 moments poster; mini pocket guide; abridged implementation guide and revised provider categories on audit tool. An expert reference group reviewed materials.

Results: LTC is different from hospitals because they are homes – places where people live – rather than facilities. Factors predicted to contribute to the development of an outbreak are: residents in high-risk categories, frequent pain medication; mobility restrictions, and a lack of up-to-date outbreak binders. In order to reduce the transmission of organisms beyond the resident room, HH for LTC has been adapted to incorporate these shared activities. “Your 4 moments” will be practiced in resident’s rooms and whenever direct care is provided. In shared activities, HH will be practiced by the residents and providers before and after activities.

Lessons learned: Outbreaks are very stressful for all staff involved. Upbeat messaging, fun and silliness went a long way to keep up staff morale. Our organization would use this technique again in the future.

POSTER PRESENTATIONS

TUESDAY, MAY 12/WEDNESDAY, MAY 13, 2009 – ST. JOHN’S CONVENTION CENTRE

TUESDAY, MAY 12, 2009

OUTBREAK BINDERS: A QUICK REFERENCE TOOL
Stefanie Ralph1, Judy DeCesroko2; Norfolk General Hospital, Simcoe, Ontario, Canada, 1Perth District Health Unit, Stratford, Ontario, Canada

Issue: Effective outbreak management needs to be thorough and consistent. An enteric outbreak occurred in the hospital the day before an all time ICP left on holdays. A brand-new part-time ICP and the Vice President of Patient Care managed the outbreak. It was identified that for a small facility, where Infection Control back-up does not run deep, a quick reference tool for outbreak management could be valuable.

Project: Reference binders were filled with all known outbreak information and relevant outbreak binders were completed. Contents include: outbreak and case definitions, contact numbers, “to do” checklists, assessment tools, control measure checklists, meeting templates, blank line listings, ready to post signs, scripts for switchboard, fact sheets, decision making framework, and references. Full versions of the Outbreak Binders are stored in the Infection Control and Vice President of Patient Care Ofiices. The Administration on Call binder is kept in the Administration Office. Indications and a dedicated trainer is not required; the 4 moments required adaptation for shared activities.

Results: The reference binders have been used for two confirmed and several potential outbreaks since their creation in February 2008. Having document templates makes the collection of data, communication, and meeting organization much simpler. The outbreak binders also help ensure small details are not overlooked. Contents of outbreak binders presented at CHICA/HANDIC during an education session. Central South Regional
ASSESSMENT OF INFECTION CONTROL AND OCCUPATIONAL HEALTH NEEDS IN A LARGE AMBULATORY CARE CENTRE
Linda Kingbury1, Sydney Scharf1, Ronaldo Fujii1, Kun Zhao2, Catherine Kidd1, Annalee Yaz1, Elizabeth Bryce1
1 Vancouver Coastal Health, Vancouver, BC, Canada, 2 Vancouver Coastal Health, Vancouver, BC, Canada, 3 Vancouver Coastal Health, Vancouver, BC, Canada, 4 University of British Columbia, Vancouver, BC, Canada, 5 University of British Columbia, Vancouver, BC, Canada, 6 University of British Columbia, Vancouver, BC, Canada.

Issue: This is increasing the demand for ambulatory care. There are no models of how to implement an occupational health and infection control program in a multi-partnered healthcare ambulatory environment, particularly with both public and private sector partners. The aim was to develop a comprehensive collaborative occupational health and infection control program that meets the needs of all partners, patients and visitors in this ambulatory care building.

Project Methods: We used three means of gathering information: (1) key informant interviews, (2) workplace inspection; (3) staff survey.

Results: Results from key informant interviews identified needs related to organizational issues, physical environment, and education/training. Staff survey results showed deficits in knowledge of infection control practices, safe sharps handling, and contact to other OHS or Infection Control. Audits revealed lack of signage, hand hygiene stations and soiled utility rooms, as well as inconsistent practice in cleaning patient care equipment and use of personal protective equipment. Recommendations were developed and are being communicated to management and staff. Implementation of the recommendations began with staff education sessions and infection control consultation.

Lessons Learned: Infection control and occupational health needs exist in ambulatory care settings, and a collaborative approach is welcome in a private-public partnership.

MEASURING RESOURCES AND ACTIVITIES FOR INFECTION PREVENTION AND CONTROL IN ONTARIO, A PROVINCIAL SURVEY ACROSS FIVE HEALTHCARE SECTORS
Colleen Nisbet, Madeleine Ashcroft, Anne Balachowsky, Nora Boyd, Isabelle Langman, Grant Bowers.
Regional Infection Control Networks, Ontario, Canada.

Issue: As Regional Infection Control Networks became established in Ontario and began strategic planning a need was identified to learn more about current infection control resources and activities within each region.

Project: To address this issue the networks facilitated a province-wide survey that provided both provincial and regional data. This research was designed to assess a variety of issues including, but not limited to, Infection Prevention and Control (IPAC) personnel, formal instruction, professional development, medical support, IPAC Committee activities and access to information. A questionnaire was designed for five healthcare sectors - Acute Care, Non-Acute Care, Emergency Medical Services, Community Care, and Public Health. The questionnaires were tailored to address sector-specific issues, but designed to ensure most questions were common to all. The survey was mailed to 1064 organizations in Ontario. 641 organizations (60%) filled out and returned the questionnaire. All results were collected, analyzed and reported by Research Strategy Group Inc.

Results: The results of this survey demonstrated IPAC strengths and weaknesses. Gaps such as a lack of formally trained professionals, time and resources for staff training and ability to manage conflicting IPAC priorities were identified. Strengths noted included access to Internet, use of IPAC networks and healthcare libraries.

Lessons Learned: An inventory of infection prevention and control resources now exists in Ontario. This inventory has become an essential tool in informing the strategic planning of regional infection control networks. In the long term, we hope to use this report to measure IPAC resource changes and improvements over time.

HAND HYGIENE – A CHANGE IN CULTURE
Mirza Ali, Scarborough Hospital, Toronto ON, Canada

An ambitious hospital-wide hand hygiene program rolled out in mid 2007 changed direction many times during its course, overcoming challenges, push back, limited funding, low compliance and an old mindset. This presentation explains program launch, raising awareness, promoting the program throughout the facility, types of interventions, duration, what worked, how measurable indicators changed, how best to use corporate resources to meet program objectives. Our experience with this taught us how to get baseline data, draw timelines for interventions, bring about change in culture, set small goals, how to sustain the program and maintain momentum

Lessons learned in this carry a take-home message for those wishing to embark on a new or jumpstart an ongoing hand hygiene program in any healthcare facility.

This project we also learned how to get physicians on board to support the program by being champions & nominate staff members to be the faces of hand hygiene. Diverse staff culture spread across two sites and the large mix of community we serve brought on many challenges. Despite all this, we achieved our objectives, on some units within a short time.

To summarize this presentation offers a simple get-started kit, projected timelines, expected results, a checklist & measurable indicators.

QUALITY AUDIT OF NATIONAL METHICillin RESISTANT STAPHYLOCCUS AUREUS (MRSA) SURVEILLANCE DATA: KEY FINDINGS AND RECOMMENDATIONS FOR IMPROVEMENT
Leslie Forrester1, Linda Pelude2, Mariana Olsen-Agostini1, John Koch1, Saeed Ghahreman1, Katie Cassidy2, Zahir Hirji3, Kathryn Bush4, Christine Weir2, Joseph Vayalumkal5, Stephanie Leduc2, Elizabeth Henderson2
1 Vancouver Coastal Health Authority, British Columbia, Canada, 2 Public Health Agency of Canada, 3 Federal Health, 4 Alberta Health Services, Alberta, Canada, 5 University Health Network, Toronto, Ontario, Canada, 6 Albert Children’s Hospital, Alberta Health Services, Alberta, Canada

Introduction: The Canadian Nosocomial Infection Surveillance Program (CNISP) has conducted surveillance for incident cases of MRSA in sentinel hospitals since 1995. The utility of these data is dependent on its quality. Since 2004, a web-based system for data input has been used. In 2007, a data quality audit of the 2005 MRSA data was conducted.

Methodology: Note validation (replicate data collection) with stratified random sampling and manual data entry. Each data set was compared to the replicated data set for congruence on seven key variables.

Results: Audit data were received from 32/44 hospitals (73%), providing 443/611 of the case forms requested. Of these, 397 (90%) had matching case identification numbers. Errors ranged from 3.5-5.3% for gender and date of birth and increased to 14.4-23.7% for less well-defined variables i.e. culture reason, where MRSA was acquired, and the culture site.

Conclusions: Date variables can be improved by incorporating date formats that reduce error (e.g. 24-JAN-2009). Provision of standard definitions with practical examples and training of data collectors may improve data quality for variables that require clinical judgment. A data quality framework with quality assurance practices, including ongoing auditing will be integrated into CNISP’s surveillance programs.

SUPERBUGS: A NIGHTMARE ON YOUR HANDS
Nora Boyd, Laura Fraser, Holly Teseelaar, Carol Annett; Regional Infection Control Network, Windsor, Ontario, Canada.

Issue: There are few resources for front line staff in long term care for infection prevention and control particularly on hand hygiene and glove use.

Project: In Ontario, 75% of direct care in nursing homes is provided by personal support workers (PSWs). Focus groups were held with PSWs and managers in Erin St Clair to determine education needs for infection prevention and control. Needs expressed by PSWs were fear of acquiring MRSA and C. difficile. Managers were concerned about glove use. Using Nadine Jane’s theory of how PSWs learn in the moment, an education session for PSWs was created and delivered: 32 sessions and 400 PSWs to evaluate content delivery. A professional film company took the concept and created a short DVD to provide standardized accessible education to PSWs in nursing homes on hand hygiene and glove use. The DVD, Superbugs, A Nightmare On Your Hands, has been distributed across Ontario.

Results: Using adult learning principles and Nadine Jane’s theory resulted in positive evaluation results. Although only 58% indicated an increase in knowledge on the topic; 99% enjoyed the presentation; 98% reported it was a good use of their time; 99% felt the teaching methods were effective and 100% reported they questions on the topic were answered.

The DVD evaluation results showed 100% of nursing homes reported it to be a useful educational tool.

Lessons Learned: An IPAC resource was successfully created. Further evaluation of the resource in terms of changing practice is required.

VISITOR HAND HYGIENE CAMPAIGN
Nora Boyd, Laura Fraser, Sadie MacDonald, Line Lauzon, Holly Teseelaar, Carol Annett, Cathy Egan, Ellen Otterbein; Regional Infection Control Network, Windsor, Ontario, Canada.

Issue: In Canada, it is estimated that infections acquired in healthcare kill 8,000-12,000 people each year. The primary measure to reduce healthcare associated infections is hand hygiene. Alcohol based hand rub (ABHR) is the most effective method for hand hygiene. Nursing homes have signage and alcohol based hand rubs at the entrances. Visitors often do not use it.

Project: A visitor hand hygiene campaign was undertaken to highlight its importance during outbreak season in nursing homes. Using a campaign created by the Waterloo Wellington Infection Control Network, the Erie St Clair Infection Control Network partnered with Public Health and the nursing homes on a visitor hand hygiene campaign. Using social marketing and a simple message, visitors and staff were asked to perform hand hygiene upon entering the home to keep our residents safe. A banner of signed hands was left in the home as a reminder of the importance of hand hygiene. The campaign used personal interaction, one clear message “Just Clean Your Hands,” a signed commitment and visual prompts. Media releases enhanced communication with the community.

Results: The campaign and partnership was positive, beneficial, simple and fun. 35 nursing homes participated with 50-120 hands signed at each home. Media coverage amplified the message through the community.

Lessons Learned: Further evaluation is required to see if engagement is effective in changing behavior over time. There are few ways of measuring hand hygiene compliance available in nursing homes.

CASE CLUSTER OF CELLULITIS ASSOCIATED WITH HYPODERMOCLYSIS IN A GERIATRIC COMPLEX CONTINUING CARE UNIT
Heather Candon, Jane Van Toen, Bryan Morales; Baycrest, Toronto, ON, Canada.

Background: As of September 1, 2008 Ontario hospitals were mandated to replace hollow-bore needles with safely engineered devices. In following this directive, Baycrest Centre for Geriatric Care implemented the use of a needle-less safety equivalent facility wide. Upon switching to the needle-less system, a cluster of hypodermoclysis-related
HANDBY HYGIENE COMPLIANCE USING THE ‘JUST CLEAN YOUR HANDS’ CAMPAIGN’S AUDITING TOOL: ACTUAL RATES VERSUS PERCEIVED RATES OF COMPLIANCE ON TWO UNITS OF A LARGE COMMUNITY HOSPITAL
Claudia Crusell-Balogh1,2, Diane Wallace1, Ruth Shertzberg1, Chris Mitchell1, Marie Singh1, William Ciccotelli1
1Grand River Hospital, Kitchener, ON, Canada, 2University of Waterloo, Waterloo, ON, Canada

Issue: To investigate actual versus perceived compliance rates for Hand Hygiene amongst Health Care Workers (HCWs) on two units in our large community hospital. Actual rates of hand hygiene compliance vary greatly between HCWs on different units; perceptions have a large role in determining compliance rates.

Project: Hand Hygiene compliance rates were calculated using the Just Clean Your Hands auditing tool provided by the Ministry of Health and Long Term Care (MOHLTC). A survey tool, based in part on the MOHLTC’s Assessment Tool for Health Care Provider Hands, was offered to all HCWs on each unit by an Infection Prevention and Control (IPC) auditor.

Results: Surveys on Hand Hygiene were administered to a total of 37 HCWs from both programmes. A total of 633 opportunities were collected; the compliance rate in the NICU was 66.7% and the Surgical Programme was 27.2%. One hundred percent of respondents overestimated their hand hygiene compliance rates based on their unit’s average rate of compliance. Interestingly, HCWs from the NICU had more realistic perceptions of both their unit’s hand hygiene compliance as well as the hospital-wide compliance rates.

Lessons Learned: The perceived rates of compliance with hand hygiene varied greatly between units with a greater discrepancy on the unit with the lower rate of compliance; this may present barriers to motivational efforts to increase hand hygiene on some units.

PARTNERS IN PREVENTION: PARAMEDICS AND HEALTH UNITS PARTNER TO PROVIDE INFEQUENCAI AEDATED TO THE COMMUNITY
Craig Bruce1, Laurie Sadoway2, County of Simcoe Paramedic Services, Midhurst, Ontario, Canada, 1Simcoe Muskoka District Health Unit, Barrie, Ontario, Canada

Issue: In October 2000 Ontario initiated a universal influenza immunization program (UIP) providing free vaccine to all residents. Ontario Health Units were given the responsibility of providing influenza vaccine to residents and have been meeting this mandate by providing clinics in a variety of community settings since the program’s inception. Marginalized and high risk members of the community may not be inclined to attend Health Unit clinics and as a result not receive immunization. Paramedics have regular contact with these residents as patients and through an established relationship of trust are uniquely positioned to provide immunization thereby increasing the coverage rates of a population at risk for influenza.

Project: Paramedic services in Toronto and the County of Simcoe partnered with local Health Units identifying organizations serving marginalized and high risk populations. Targeted organizations included those serving the homeless and under housed, senior’s organizations and emergency service partners. Immunization clinics were scheduled and conducted by Paramedics at the venues frequented by the population these organizations serve.

Results: The number of clinics and the client numbers have increased since the programs inception. Toronto clinics increased from 73 clients in 2000 to 1703 in 2004 and County of Simcoe Clinics increased from 495 clients in 2006 to 982 in 2008.

Lesson Learned: Providing access to influenza vaccine at venues frequented by marginalized and high risk populations can improve influenza immunization rates for this population. Familiarity with Paramedics and convenience contributed to increased vaccine uptake, leading to the success of the Health Unit/Paramedic Service partnership.

POSITIVE IMPACT OF PROSPECTIVE SURVEILLANCE ND A MULTIFACETED SURGICAL SITE INFECTION (SSI) REDUCTION PROGRAM TO REDUCE IN GASTROINTESTINAL CANCER SURGERIES
Fatema Jinnah, Sandra Callery, Mary Vearncombe; Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada

Background: Surgical site infections (SSIs) are common nosocomial infections in surgical patients. SSIs in colorectal surgery have high morbidity, increasing of length of stay, increasing hospital costs and impacting quality of life. SSI surveillance with feedback has been shown to reduce SSI rates.

Method: Prospective surveillance on all elective colorectal (CRC) and hepatobiliary and pancreatic (HBP) cancer surgeries started in January 2007 when baseline SSI rates were collected. Interventions to reduce SSIs included: timing of prophylactic antibiotics, maintaining normothermia, pre-operative clipping, hand hygiene and the introduction of chlorhexidine in alcohol (CHG) skin-prep solution. Surveillance results on SSI rates and process indicators were provided to the SSI team during regular meetings and surgeon specific rates were given to individual surgeons.

Results: Baseline SSI rates were CRC 15.8% and HBP 28.2%. Post-intervention (October to December 2008) SSI rates were: CRC 12.0%, and HBP 3.3%. The overall severity of infection was also reduced post-intervention. Compliance rates of prophylactic antibiotic timing and normothermia maintenance increased from 64.2% and 42.6%, respectively, in December 2005 to 71% and 75%, respectively in October 2008.

Conclusion: The introduction of prospective surveillance, multifaceted interventions with prompt feedback of SSI rates and process indicators to the SSI team and surgeons was effective in reducing the rate of SSIs associated with gastrointestinal cancer surgeries.

AN INNOVATIVE CROSS-REGIONAL INFECTION PREVENTION CONTROL AND OCCUPATIONAL HEALTH AND SAFETY PARTNERSHIP TO ADDRESS STAFF INFLUENZA VACCINATION RATES
Melanie Ashworth1, Rosa Cashmore1, Ruth Collins1, Julie Fischer1, Doreen Foster1, Jennifer Gilland5, Anne Kubacki6, Dana Marelic8, James Prang9, Pam Siddall1, Alexis Silverman7, Brenda Smith1, Debbie Valicik1, Jo Zupnik1
1Mississauga Halton Infection Control Network, Mississauga, ON, Canada, 2Peel Public Health, Brampton, ON, Canada, 3Brampton-credit Outlers Commun, Fergus, ON, Canada, 4Hilton Health Care Services, Oakville, ON, Canada, 5Halton Region Health Department, Oakville, ON, Canada, 6W4i Oiler Health Centre, Brampton, ON, Canada, 7Non Peel Public Health, Toronto, ON, Canada, 8Headwaters Health Care Centre, Orangeville, ON, Canada, 9Central West Infection Control Network, Brampton, ON, Canada, The Crediacare Hospital, Mississauga, Ontario, Canada

Issue: Since the introduction of universal free vaccine in Ontario, public and long-term care facility staff influenza vaccination rates have increased, while hospital staff rates have remained stagnant. Staff vaccination impacts patients and is a shared concern for occupational health and safety, OHS, and infection prevention and control (IPAC) professionals in facilities, public health unit staff, and Regional Infection Control Networks (RICNs). IPAC and OHS’s program partnership was critically emphasized in The SARS Commission Final Report (2006).

Project: The staff of two adjacent RICNs in Ontario joined the OHS’s department leads and IPAC professionals from five hospital corporations and four public health units in summer 2006 to brainstorm strategies, share policies and procedures, and reach consensus on standard shared influenza record cards, promotional messaging and materials such as banners, pins, and t-shirts.

Results: The 2008-2009 season vaccination rates have not risen significantly above the previous years’ in the hospitals, the trend is upwards. The group acknowledged the mutual support gained from this initiative, and that this is but the first step in a focused and collaborative effort to mitigate the ongoing challenge of influenza in our communities.

Lessons Learned: As health care workers in our regions tend to work across organizations, the group recognizes that consistent and standardized messaging is advantageous to demonstrate solidarity across regions. This initial networking provided evidence that long-standing organizational boundaries can be overcome in the interests of best practices for protecting the health of workers and patients, and OHS and IPAC joint endeavours.

STREAMLINING FEBRILE RESPIRATORY ILLNESS SURVEILLANCE; NOTHING TO SNEEZE AT!
Angela Wigmore, Natalie Bruce, Virginia Roth, Kathryn Suh; The Ottawa Hospital, Civic Campus, Ottawa, Ontario, Canada

Issue: Surveillance for febrile respiratory illness (FRI) is an essential part of nosocomial respiratory infection prevention. Despite this, FRI surveillance is labour intensive. At the Ottawa Hospital (TOH) FRI surveillance has included a screening process on patients admitted to hospital. In addition, Infection Prevention and Control (IPAC) has reviewed all admission diagnoses and reviewed charts on all patients who had 1 of the 13 diagnoses suggestive of FRI.

Project: TOH IPAC team developed an action plan to streamline FRI surveillance and increase healthcare professionals’ (HCPs) awareness of FRI for 2008-09. This plan included: standardized surveillance, education and communication strategies. We reviewed the diagnoses of influenza cases from 2007-08. A FRI education curriculum was developed and piloted on 10 units. A FRI algorithm was developed to assist HCPs. FRI was highlighted at the annual nursing days skill. A communication strategy was developed including poster distribution, correspondence to management, and access to electronic teaching materials.

Results: On review of influenza cases from 2007-08 the 3 most common admission diagnoses were pneumonia, viral respiratory illness and COPD. Prospectively applying streamlined surveillance in 2008-09 we have eliminated 10 of the 13 (76%) admission diagnoses, including pneumonia, viral respiratory illness and COPD. An increased number of patients admitted to hospital. In addition, Infection Prevention and Control (IPAC) has reviewed all admission diagnoses and reviewed charts on all patients who had 1 of the 13 diagnoses suggestive of FRI.

Project: TOH IPAC team developed an action plan to streamline FRI surveillance and increase healthcare professionals’ (HCPs) awareness of FRI for 2008-09. This plan included: standardized surveillance, education and communication strategies. We reviewed the diagnoses of influenza cases from 2007-08. A FRI education curriculum was developed and piloted on 10 units. A FRI algorithm was developed to assist HCPs. FRI was highlighted at the annual nursing days skill. A communication strategy was developed including poster distribution, correspondence to management, and access to electronic teaching materials.

Results: On review of influenza cases from 2007-08 the 3 most common admission diagnoses were pneumonia, viral respiratory illness and COPD. Prospectively applying streamlined surveillance in 2008-09 we have eliminated 10 of the 13 (76%) admission diagnoses, including pneumonia, viral respiratory illness and COPD. An increased number of patients admitted to hospital. In addition, Infection Prevention and Control (IPAC) has reviewed all admission diagnoses and reviewed charts on all patients who had 1 of the 13 diagnoses suggestive of FRI.

Project: TOH IPAC team developed an action plan to streamline FRI surveillance and increase healthcare professionals’ (HCPs) awareness of FRI for 2008-09. This plan included: standardized surveillance, education and communication strategies. We reviewed the diagnoses of influenza cases from 2007-08. A FRI education curriculum was developed and piloted on 10 units. A FRI algorithm was developed to assist HCPs. FRI was highlighted at the annual nursing days skill. A communication strategy was developed including poster distribution, correspondence to management, and access to electronic teaching materials.

Results: On review of influenza cases from 2007-08 the 3 most common admission diagnoses were pneumonia, viral respiratory illness and COPD. Prospectively applying streamlined surveillance in 2008-09 we have eliminated 10 of the 13 (76%) admission diagnoses, including pneumonia, viral respiratory illness and COPD. An increased number of patients admitted to hospital. In addition, Infection Prevention and Control (IPAC) has reviewed all admission diagnoses and reviewed charts on all patients who had 1 of the 13 diagnoses suggestive of FRI.
The Standardization of Infection Control Guidelines and Practices for Emergency Departments Within Capital Health

*Murray RN ICP, Daphne; Darrow RN, Debbie; Clory MDCC: CCP EM, Michael; Cosshell L, MacDonald RN, IPC, HSAM, Sheila Daphne Murray, Debbie Darrow, Michael B. Clory, Sheila MacDonald, Lillian Cosshell Capital Health, Halifax, Nova Scotia, Canada

Issue: When patients present to the emergency department, the combination of severe illness, the busyness, and the application of special precautions can cause a great deal of angst for patients and families and the emergency staff. We noticed staff had increased anxiety trying to figure out precautions, bed placement etc.

Project: We recognized the need to simplify strategies in this unpredictable environment. Recognizing that not all of Infection Control practices are easily, implemented within the continuous development of the department. The project was to support staff and patients by providing a standardized reference on infection control precautions for all of the Emergency Departments throughout Capital Health. The ultimate goal was to improve the quality of care, build capacity, and enhance staff knowledge, by creating a well-defined, standardized infection control, practice reference.

Results: The project was an example how different professions have successfully collaborated, putting the care of patients and families first. We collectively created a poster that is large enough in print to see from the foot of a stretcher, provides current Infection Control practices and examples of illnesses in that category.

Lessons Learned: Staff display confidence in their decision-making; they understand the information is limited on this poster

IF YOU CAN'T CLEAN IT, YOU CAN'T STERILIZE IT: NEW EDITION OF A CANADIAN STANDARDS ASSOCIATION (CSA) STANDARD TO ASSIST IN DECONTAMINATION OF REUSABLE MEDICAL DEVICES

Susan Lafleish1, Grace Rylett2 Regional Infection Prevention and Control Program, Alberta Health Services, Edmonton, AB, Canada, 2Canadian Standards Association, Mississauga, ON, Canada

Issue: With numerous media reports of outbreaks and patients reporting from breaches in practices of reprocessing medical devices, revision of the 2000 version of CSA Decontamination of Reusable Medical Devices began in 2004 with a mandate to expand the content and detail in the standard that would provide Canadian medical device reprocessing (MDR) and Infection Prevention and Control (IPC) personnel with a useful tool upon which to base policies and procedures.

Project: Proposed enhancements to the standard that included information on endoscopic devices, mechanical cleaning and disinfection equipment, Routine Infection Control Practices, quality systems, medical device alerts, water quality and annexes to assist. A working group consisting of thirty-three expert members from MDR, operating room, endoscopy, microbiology, infection control, industry and regulatory bodies began work on revision of the standard in 2004.

Results: The new version of the standard, containing the above detailed information regarding the decontamination phase of medical device reprocessing was published in March, 2008 following extensive review by the CSA Sterilization Technical Committee and the public.

Lessons Learned: Incorporating a substantive amount of additional information, in addition to resolving comments from multiple sources, delayed the publication of the standard past the 2004 target date of December 2005. Revisions to the next edition of the standard will commence at least 2 years prior to the next targeted publication date of 2013.

INITIATIVES TO IMPROVE HEALTHCARE WORKER INFLUENZA VACCINATION YIELDS PROMISING RESULTS

Silvana Perna, Pearl Orenstein, Anne Desmarais, Barbara Amihod, Norma Conصولacion, Sharon Gates, Mark Miller; Jewish General Hospital, Montreal, Quebec, Canada

Issues: The Jewish General Hospital (JGH) is a 617 bed tertiary care hospital in Montreal with approximately 5000 employees. At the JGH, an annual flu vaccine campaign is organized. In 2007 our vaccination rate of 1436 healthcare workers (HCW) was far from the desired 60% per vaccine rate set by Public Health. Our goal was to improve this year’s vaccination rate among HCWs. During the 2008-09 influenza season, various outreach efforts were made to promote influenza vaccination.

Project: A timeline, including a detailed list of tasks to be accomplished, personnel responsible and deadlines was created at the beginning of the influenza season in 2007. The three main events included: public vaccination of “VIPs” who were photographed while receiving their flu shot, influenza presentation at medical rounds by an Infectious Diseases physician with lunch and door prizes provided, followed by employee vac- cinations, and finally, the names of all employees who gave proof of vaccination were entered into a draw for major prizes. Other promotional events included: advertisement in our newsletter, repeated pay slip messages, posters and pamphlets on units and in public areas, pharmacy updates and in collaboration with Health Services, vaccination cars circulated throughout the unit during all three shifts.

Results: 1996 employees were vaccinated, including 456 nurses and 124 physicians (excluding residents and students) compared to 358 and 109 respectively in 2007.

Lessons learned: We believe that this campaign was successful because of the multiple strategies used, the major prizes given and the support received by upper management.

HAND HYGIENE EDUCATION

Barbara Catt, Olivia Yow, Sandra Callery, Mary Vearmcombe; Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada

Background: Hand hygiene (HH) is essential to patient safety and is the single most important method to prevent the spread of infections. Effective April 2009, all hospitals in Ontario must publicly report HH compliance rates. SHSC is a tertiary teaching facility. Education sessions were adapted from Your 4 Moments of Hand Hygiene in the Just Clean Your Hands campaign from the Ontario Ministry of Health and Long-Term Care (MOHLTC) and were piloted on 2 acute inpatient units, 1 medical and 1 surgical. Multiple sessions included the three key principles: importance of HH compli- ance, placement of alcohol-based-hand-rub (ABHR) at point-of-care (POC), with visual prompts. The sessions consisted of senior leadership participation; perception survey; lecture; video; team game; case scenarios. Unit-specific HH compliance was provided and staff were asked for ways to improve compliance on their unit. Attendees included all health care worker (HCW) disciplines. The medical and surgical unit rates before the sessions were 33% and 45% respectively. Three months after the sessions, compliance was 52% and 81% respectively.

Discussion: Our results support that the literature that a multifaceted-program approach will help to improve HH compliance. This consists of actively involving influential decision-makers in and providing HH education to HCWs, supported by environmental changes such as ABHR at POC, visual prompts and ongoing HH audits with immediate feedback to the HCW.

HEALTH CARE WORKER PERCEPTIONS ON HAND HYGIENE COMPLIANCE

Barbara Catt, Olivia Yow, Sandra Callery, Mary Vearmcombe; Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada

Background: Hand hygiene (HH) is essential to patient safety and is the single most important method to prevent the spread of infections. SHSC is a tertiary teaching facility. Education sessions were adapted from Your 4 Moments of Hand Hygiene in the Just Clean Your Hands campaign from the Ontario Ministry of Health and Long-Term Care (MOHLTC). Sessions were piloted on 2 acute-care units, 1 medical and 1 surgical. Multiple sessions included the three key principles: importance of HH compliance, placement of alcohol-based-hand-rub (ABHR) at point-of-care (POC), with visual prompts. The sessions consisted of senior leadership participation; perception survey; lecture; video; team game; case scenarios. Unit-specific HH compliance was provided and staff were asked for ways to improve compliance on their unit. Attendees included all health care worker (HCW) disciplines. The medical and surgical unit rates before the sessions were 33% and 45% respectively. Three months after the sessions, compliance was 52% and 81% respectively.

Discussion: Our results support that the literature that a multifaceted-program approach will help to improve HH compliance. This consists of actively involving influential decision-makers in and providing HH education to HCWs, supported by environmental changes such as ABHR at POC, visual prompts and ongoing HH audits with immediate feedback to the HCW.

PROVINCIAL SURVEILLANCE OF CLOSTRIDIUM DIFFICILE INFECTIONS: THE B.C. EXPERIENCE

Bruce Cangave1, Joanne Archer1, Sarah Paghi2, Ellie Sheng2, Lesley Forrester3 1Provincial Infection Control Network of BC, Vancouver, BC, Canada, 2Vancouver Coastal Health Authority, Vancouver, BC, Canada

BC’s Provincial Infection Control Network (PICNet) is implementing standardized provincial surveillance for Clostridium difficile infections (CDI) in all acute care facilities across all Health Authorities (11As) in the province. The web-based system enables health care facilities to upload CDI data, capture personal identifiers, and screen data, devoid of personal identifiers, to the PICNet database. The surveillance will enable tracking of provincial rates and trends of CDI over time and determine risk factors and estimated morbidity and mortality. Standardized surveillance will allow for the establishment of benchmarks to assist facilities in improving infection control practice and, ultimately, patient care. In collaboration with the HAs and the BC Ministry of Health, aggregate provincial rates and trends will be made publicly available. BC’s approach to establishing provincial CDI surveillance is unique. Case definitions and a minimal data set were determined using a collaborative approach, inclusive of all end users. The surveillance is voluntary and interfaces with existing databases where they exist avoiding the need for duplicate data entry. Where a facility did not have a database, one was provided. Participation Agreements outlining data ownership, privacy issues, and roles and responsibilities of all partners have been signed. Separate HAMIT systems, and the navigation of provincial privacy legislation, have made sharing data across HA borders challenging, but still feasible.

We offer insights into the system development process, and an overview of the system. We highlight the agreed-upon case definitions and minimal data set, and include screen shots of the PICNet surveillance system and a template of the provincial aggregate reports.

INFECTION PREVENTION AND CONTROL (IPAC) INTERVENTIONS DURING A RESIDENTIAL SUMMER CAMP OUTBREAK

Amanda Knapp, Fairleigh Seaton, Joanne McGurn, Mag McNeyolds Kingston, Frontenac: and Lennox & Addington Public Health, Kingston, ON, Canada

In the summer of 2008 a children’s residential summer camp experienced an out- break of gastroenteritis where 25% of attendees were ill and 38% had concurrent illness. Staff and campers from multiple cabins and offsite canoe trips were affected. Compounding the problem was the facility’s limited information regarding outbreak control and the inadequate response by camp management which included not informing parents. The outbreak continued over multiple camp sessions and some had multiple episodes of illness. Consequently, it was necessary for Public Health to take a more active role in preventing the spread of illness.

Project: In response to the outbreak a public health nurse, public health inspector and infection control practitioner visited the camp, identified areas for concern, and provided hand sanitizer and disinfecting wipes. Staff education and training on IPAC practices was conducted at a second visit. However, camp actions were ineffective following the initial interventions and the outbreak continued. Due to these issues a Section 22 Order
under the Health Protection and Promotion Act was issued by the Medical Officer of Health outlining required actions to stop the spread of illness.

Results: After the required actions were implemented no further cases occurred.

Lessons learned: Determined that camp staff and management needed knowledge of IP&C procedures. This helped them realize the need for increased training of camp staff. In the spring of 2009 a resource binder and training session will be introduced for residential and day camp settings.

A TOOLKIT TO “STOP THE SPREAD”

Alison Chant1; Marney Hunt1; Robin Hunter1; Kevin Noel1; Eva Thomas1; Marisa Nichini1; Ghada Al-Rawahi1

1Children’s and Women’s Health Centre, BC, Canada; 2BC Cancer Agency, BC, Canada; 3Provincial Health Services Authority, BC, Canada, 4Kevin Noel Communications, BC, Canada

Background: Strict adherence to hand hygiene is the best way to prevent health-care-related infections.

Methods: The toolkit is designed for flexibility since the implementation requirements for the campaign may be different for each location. Agencies are encouraged to choose the tactics and materials that best suit their needs, while respecting the overall strategic priorities of the campaign. This entails promoting the campaign through display of its unique visual identity and through internal communications within the scope of the campaign. The toolkit includes a detailed action plan with time-lines to use before and during the launch as well as a list of supporting materials and resources.

Results: The toolkit has had significant impact. The first version captured all the communications pieces and formed a timeline of sorts to document the flow of the campaign. Additional versions were developed for each year with step details.

Conclusion: The five year life expectancy for the campaign means a living document such as the toolkit is a valuable resource, a record of what was done and what is planned to sustain a HII campaign over the long term.

INFLUENZA IMMUNIZATION AMONG STAFF AND VOLUNTEERS AT TWO LONG-TERM AND RESIDENTIAL CARE FACILITIES

Jackie Ratzaiff, Leslie Forrester, Gail Buso, Mitra Eshghpour; Vancouver Coastal Health, Vancouver, BC, Canada

BACKGROUND: Influenza immunization is an expectation for those persons working in healthcare. Historically, immunization rates have been suboptimal.

OBJECTIVES: To 1) examine influenza immunization history 2) ascertain immunization intentions 3) identify reasons for not getting immunized.

METHODS: Hard copies of a brief survey were circulated to staff and volunteers over a three-week period. The initial survey was undertaken in Fall 2003 and replicated in Fall 2008.

RESULTS: In total, 398 survey responses were received, 221 (56%) in 2003 and 177 (44%) in 2008. A total of 51% of responses were from Nursing, 10% from both Dietary and Volunteers, 9% from Allied Health, 5% from Housekeeping and 5% from Other.

1) In Fall 2003, 55% of respondents reported that they had or planned to get immunized (77% in 2003 to 83% in 2008) and 2) In Fall 2008, 51% reported that they had or planned to get immunized (74% in 2003 to 81% in 2008). The main reasons for not getting immunized involved concerns about side effects and personal beliefs.

CONCLUSIONS: There was a statistically significant increase in the proportion of staff that reported getting immunized in 2008 compared to 2003. There were no differences in the reasons reported for not getting immunized. Future educational strategies will focus on interventions to allay fears about side effects.

BETWEEN A ROCK AND A HARD PLACE: CHALLENGES GETTING EVALUATION TOOLS TO EMERGENCY HEALTH SERVICES

Barb Goulet, Marg McKenzie; Emergency Medical Services , City of Edmonton, Canada

Issue: Inception of a CHICA Prehospital Care Interest Group in 2006 created the opportunity to promote evaluation of quality of care, practice, and education related to IP&C in prehospital care services. A survey to identify need and an audit tool to meet this need.

Opportunity: To promote evaluation of quality of care, practice, and education related to IP&C.

Background: Patients admitted to hospital may potentially be colonized with MRSA or VRE. In our hospital we aim to screen all medical patients for MRSA and VRE within 24 hours of admission to the floor. Compliance with this screening is audited. Historically we have performed a point estimate of screening compliance manually on a single randomly selected day of each month. This method had obvious limitations including labour intensiveness, attribution of errors to the wrong unit and lack of timeliness.

Method: To address these limitations a new computer-generated methodology was introduced. This methodology correlates the time of admission with the time when screenings were performed. We compared the screening compliance rates generated by these two methodologies for the patients admitted in 2007. The mean compliance rates for the two methods were compared using two sample t-test statistic assuming unequal variance.

Results: The new methodology provided more precise estimates and statistically higher compliance rates then the old one (mean difference = 4.67%), SD = 0.98.

Lessons Learned: An automated computer-generated audit report provides an easy and more precise way to assess compliance with MRSA/VRE admission screening and is recommended for institutions with a well established Information System. A manual audit on a randomly selected day of the month provides an adequate alternative in the event of difficulties building an Information System automated report.

SUCCESSFUL STRATEGIES IN THE FIGHT AGAINST HOSPITAL ASSOCIATED VANCOMYCIN RESISTANT ENTEROCOCCUS (VRE)

Inez Landry, Charlie Dickey, Diane Lewis, Donna Perron; Queen’s Carleton Hospital, Ottawa, Ontario, Canada

ISSUE: The investigation of Vancomycin Resistant Enterococcus (VRE) outbreaks that occurred in 2004-05 and in early 2005-06 alerted the infection prevention and control professionals to the fact that there was a problem with contact isolation procedure compliance, environmental cleaning of the non critical patient care equipment and antibiotic prescribing practices.

Outbreak Management: Outbreak control measures were put into place. Strategies were introduced to address the isolation compliance, patient care equipment and antibiotic use concerns. There were multiple working groups that provided their expertise to address the different strategies.

RESULTS: Major Success: VRE Hospital Associated rate decreased from 2.2 per 1,000 admitted patients in 2005/06 to 0 in 2006/07; 0 in 2007/08 and 0 in 2008/09 to date.

LESSONS LEARNED FOR CONTINUED VRE OUTBREAK PREVENTION:

1) Multi strategies are important to decrease rates of VRE hospital associated infections.
2) It is important to pilot some strategies before implementing hospital wide.
3) Cleaning accountabilities are required for non critical patient care equipment.
4) The ward aide position added to patient care areas has been valuable in reducing hospital acquired infections.
5) Physician education on antibiotic prophylaxis made a difference in the right antibiotic being ordered for the correct amount of time.
6) Education on the importance of compliance with isolation procedures and processes must be reinforced annually.
7) Contact isolation personal protective equipment and enhanced cleaning protocols that were continued after the outbreaks assisted with the decrease in other AROs.

THE RELATIONSHIP OF INFECTION SURVEILLANCE AND CONTROL ACTIVITIES AND INFECTIOUS RATES IN CANADIAN LONG-TERM CARE FACILITIES

Dick Zoutman1, B. Douglas Ford2, Jim Gahts3; Department of Pathology and Laboratory Medicine, Queen’s University, Kingston, ON, Canada; 2Infection Control Service, Kingston General Hospital, Kingston, ON, Canada; 3Infection Control Service, Providence Care, St. Mary’s of the Lake and Mental Health Services, Kingston, ON

Background: The examination of the relationship of infection surveillance and control activities and infection will identify strategies to reduce morbidity and mortality from infection in LTCFs.

Methods: A survey was sent in 2005 to all Canadian LTCFs to assess infection surveillance and control resources and activities (In Press). Influenza rates were also assessed. Regression analysis was used to examine the association of infection surveillance and control activities and influenza rates.

RESULTS: One third of LTCFs responded (34%, 488 of 1,458). The mean influenza rate was 1.3 (SD 3.6) per 10,000 patient days. Influenza outbreaks or clusters occurred in 37 % of LTCFs in 2004. Influenza vaccinations were received by 93 % of LTCFs residents. Almost all LTCFs (99 %, 424 of 429) have policies regarding the prevention and management of influenza in residents, there is a system to teach this policy to resident care staff in 93 % and a system to monitor adherence to this policy in 81% of LTCFs. Surveillance index scores (r = -0.15, P = .02) were negatively associated with influenza rates.

Conclusion: Higher levels of infection surveillance were associated with lower influenza rates. There is need for further investment in surveillance to reduce resident morbidity and mortality from influenza. The authors have reported elsewhere that infection surveillance in Canadian LTCFs does not meet recommended levels.
A VASCULAR SURGICAL UNIT’S EXPERIENCE IN THE IMPROVEMENT OF INFECTION PREVENTION AND CONTROL PRACTICES.

Lynnette McCarthy-Woodrow, Merle Steele-Rodway, Maureen March, Joan Bursey, Sharon O’Reilly
Eastern Health, St. John’s, NL, Canada

Issue: Infection prevention and control practices are often challenging in a surgical setting due to high number of vascular surgical procedures, high nurse patient ratios, design flaws, and a high risk patient population. This report will focus on process improvement initiatives on one vascular surgical unit in a St John’s hospital focusing on increasing awareness of infection prevention practices.

Project: Quality assurance data identified a significant problem with MRSA: infection and transmission on this unit. Subsequently a multidisciplinary process improvement team focused on improving practices to prevent transmission. The improvement team identified the following deficiencies: education, isolation practice variances, screening and decolonizing inconsistencies, and environmental concerns including lack of dedicated patient equipment and adequate staff for equipment and environmental cleaning.

Results: Facilities management, environmental services, and unit staff addressed design flaws. Education sessions were held, formally and informally, with staff to review infection control practices for the vascular unit. Patient and family hand hygiene practices were improved. There has been better collaboration between physicians and other members of the health care team. Increased staff has been allotted to enhance equipment and environmental cleaning practices.

Lessons Learned: Acceptance and respect of teamwork with all health care members, including patients and families, is extremely important in order to implement and maintain changes in infection control practices. Ongoing process improvement meetings within the unit should be implemented at least quarterly. An audit of the practices could be performed to keep staff aware of the needs for continuous infection prevention and control practices.

POSTING AND DISCUSSING HAND HYGIENE COMPLIANCE AUDIT RESULTS WITH FRONT LINE CLINICAL STAFFS IMPROVED HAND HYGIENE COMPLIANCE IN A PAEDIATRIC INTENSIVE CARE UNIT

Matthew B. Clarke1,2, Ian Chen Calliet3, Marney Hunt1, Rita Dekleer1, Robyn Hunter1, Eva Thomas1

1PHSA Infection Prevention and Control Service, Provincial Health Service Authority, Vancouver, British Columbia, Canada; 2Department of Pathology and Laboratory Medicine, Children’s & Women’s Health Centre of British Columbia, Vancouver, British Columbia; Canada

Background: Hand hygiene (HH) is one of the most effective methods for reducing health-care associated infections. Many studies have shown that HH compliance among health care workers may be as low as 30-40%. To achieve both short and long term benefits of HH, we implemented a system comprised of standardized HH audits, compliance report cards, and HH audits performed to keep staff aware of the needs for continuous infection prevention and control practices.

Objective: The study was aimed at exploring a sustainable HH behaviour change model and assessing the impact of our implemented HH interventions.

Method: The Paediatric Intensive Care Unit was chosen as a pilot site. A trained HH auditor performed data collection consistently for two study periods: Period I (Pre-Intervention: 10–29 Oct. 08) and Period II (Post-Intervention: 1-29 Dec. 08). Microsoft Access database was employed for data entry and storage. Data management and analysis was performed with SPSS (version 15.0).

Results: Period I: 339 opportunities were identified over 840 minutes of observation. Overall HH compliance rate was 47.8%. Period II: 297 opportunities were recorded over 1095 minutes of observation. The overall HH compliance rate was 67.0%.

Discussion/Conclusion: The HH intervention system was well received by all stakeholders and did improve HH compliances. We identified areas for improvement across all subcategories of health care workers. Although the results are encouraging, long term follow-up and repeated assessments are necessary to know whether the increased HH compliance will persist over time and represents a true cultural change in clinical staff behaviour.

IS IT TIME FOR A GLOVE CHANGE?

Luce Ouellet, Ansell Canada, Cowansville, Qc, Cape Verde

Issue: Recommendations for glove change have been provided by many associations. Glove wear time is dependant on many factors. The goal for this review is to find scientific evidences on the impact of glove change.

Methods: Literature was reviewed for evidence related to glove change. Although the use of gloves is routine practice in health care settings, little is known about the impact of glove change. A review of available literature was performed.

Results: There are no scientific evidences in regards to prevention and different approaches in qualifying and preventing glove wear time. Finally, it is determined to provide material in a noncommercial format that satisfies the needs of CHGCA.

INFLUENZA VACCINATION FOR HEALTHCARE PERSONNEL IN THE HOSPITAL; PROTECT THE PATIENT, BEGIN WITH YOURSELF.

Norma Bok,1,2 Luard Scholtes3,1, Van der Frits Mosterd4,1, Van der Zee5

1Medical Centre Leeuwarden, Leeuwarden, Netherlands; 2Public Health Laboratory Friesland, Leeuwarden, Netherlands

ISSUE: Influenza can cause serious morbidity and mortality in hospitalized patients. Vaccination of healthcare workers can reduce this risk up to 50%. For this reason the Health Council of the Netherlands advised boards of healthcare institutions in 2007 to offer influenza vaccination to all healthcare personnel with close patient contact. In 2008 our hospital started a campaign to reach a 50% vaccination rate within three years.

PROJECT: A steering committee organized the campaign according to a conscientious action plan in which tasks, authorizations and responsibilities were carefully described. A public campaign was part of the campaign. Vaccination points were situated nearby the personnel restaurant and the personnel exit. To increase compliance, entertaining activities were offered. Reported adverse effects were recorded.

RESULTS: The first campaign resulted in a disappointing 15.5% vaccination rate. On high care wards like oncology, haemodialysis, and intensive care, rates were 12.5%, 16.2%, and 5.4%, respectively. Surprisingly, vaccination rate was found among physicans (22%). Adverse reactions were reported in 2% of vaccinated healthcare workers. A lack of adequate information was reported by several chief nurses.

LESSONS LEARNED: Vaccination campaigns need to be recommended to present personnel as well as to future employees. Ward visits and information sessions should be organized early in the campaign, and discussions should be started with target groups. Use of fixed vaccination sites as well as mobile teams is recommended, as well as an extension of the vaccination period. Adverse reactions should be recorded for every vaccinated employee.

WEDNESDAY, MAY 13, 2009

PROCESS AND FEEDBACK ENHANCES THE COMPLETION OF ADMISSION SCREENING SWABS

Sabrina Mastronardi, Karina Michelle Ramirez, Sheena Schuck, Allison McGeer Mount Sinai Hospital, Toronto, Ontario, Canada

Background: Expert bodies recommend that patients at high-risk of colonization/infected with antibiotic-resistant organisms (AROs) be screened for early identification of ARO colonized patients. This approach can reduce the spread of AROs in hospital settings and reduce healthcare expenditure.

Issue: Although Mount Sinai Hospital has implemented a systematic approach to the patient and health care personnel screening and identification of patients infected with ARO, there was no systematic way to track the results of the ARO screening.

Method: This review will describe available scientific evidences on the impact of ARO screening and the benefits that have been experienced. An innovative approach was developed which was implemented into the inpatient and emergency rooms.

Results: Audits were performed for one week each month beginning February 2008. Monthly graphic feedback provided to nursing management and the information shared with front line staff; based on discussions with users, feedback was improved in September. An average of 114 sets of admission swabs were collected per week. The average compliance with the screening questionnaire was 29% (17/59) in February 2008 and increased steadily to 57% (37/65) in December 2008. The number of swabs completed within 24hrs of admission increased from 63% in September 2008 to 69% in December 2008.

Lessons Learned: Monthly feedback to staff regarding admission swab rates has helped to increase compliance. These results have also helped to decrease the number of patients exposed to patients colonized with AROs.

AN INNOVATIVE APPROACH TO MONITORING 30-DAY POST-OP SSI RATES

Phil Agnew, Chantelle Mott, Kerry Decker, and Christine Coady, St. Anthony’s, Newfoundland, Canada

Hospital, located in St Anthony, NL, fully accredited providing acute-care services to the people of Northern Peninsula, southern Labrador, and the Quebec Lower North Shore. Performs a variety of surgeries. From May 2007 to March 2008, a total of 2756 surgical cases (1923 outpatient surgeries and 833 inpatient surgeries) were performed.

Issue: The 30-Day Post-Op surveillance is a project that has been implemented within the St. Anthony’s and Labrador Health Network (SALHN) in order to monitor surgical site infections (SSI) in our acute care hospitals.

Method: A steering committee organized the campaign according to a conscientious action plan in which tasks, authorizations and responsibilities were carefully described. A public campaign was part of the campaign. Vaccination points were situated nearby the personnel restaurant and the personnel exit. To increase compliance, entertaining activities were offered. Reported adverse effects were recorded.

RESULTS: The first campaign resulted in a disappointing 15.5% vaccination rate. On high care wards like oncology, haemodialysis, and intensive care, rates were 12.5%, 16.2%, and 5.4%, respectively. Surprisingly, vaccination rate was found among physicans (22%). Adverse reactions were reported in 2% of vaccinated healthcare workers. A lack of adequate information was reported by several chief nurses.

LESSONS LEARNED: Vaccination campaigns need to be recommended to present personnel as well as to future employees. Ward visits and information sessions should be organized early in the campaign, and discussions should be started with target groups. Use of fixed vaccination sites as well as mobile teams is recommended, as well as an extension of the vaccination period. Adverse reactions should be recorded for every vaccinated employee.

NEED TO EMPHASIZE ON COMMUNITY REACHOUT TO THE RURAL PEOPLE IN DEVELOPING COUNTRIES ABOUT HIV/AIDS

Kehinde Adesoye, Arfa Ibadan, Nigeria

Background/Objectives: HIV/AIDS, the number one deadly infectious disease known today, has drawn global attention on various issues concerning its cause, how it is contacted, symptoms, prevention etc. Actually, there has been a lot of advocacy, education, enlightenment on the disease but the target is mostly on the urban dwellers and minimal rural dwellers have access to this information. A project to enlighten rural dwellers on AIDS is being designed.

One of our main challenges was to obtain good 30-day post-op infection rate data. The infection control nurse and a community home care nurse partnered to develop a process and questionnaire for a 30-day follow-up.

After 30 days the community home care nurse contacts the patient and completes the screening questionnaire. Patients are very welcoming and appreciate that we take the time to follow-up on their surgery. If there is an indication of infection, the ICP pulls the chart and begins an in-depth review of the client’s record and determines if there is a probable SSI infection.

We are progressing well at improving the care components of timely initiation and discontinuation of antibiotics and maintaining normothermia. Insuring staff, talking it up in the clinical areas, and posting our data on SSI prevention has gained the attention and commitment of staff to improve SSI care.

We are pleased with our work to date and open to learn from and share with our colleagues across the region and country.

The Canadian Journal of Infection Control | Spring 2009 49
Methods: Questionnaire method of research was used and numbers of volunteers were interviewed on their awareness on HIV/AIDS. 500 volunteers were interviewed from each settlement including their prominent leaders in the society.

Results: A total of 1000 volunteers were interviewed. Only 27% of them are aware of HIV/AIDS. The awareness of the ship’s crew, hospital staff and passengers are much lower. Also the effectiveness of the attention and knowledge of those awareness are lacking. Some of the volunteers have skepticism or are not willing to share their experiences and knowledge.

Conclusions: It is observed that rural people don’t have enough awareness on HIV/AIDS in developing countries. This is because electronic media like radio and television are mostly used in disseminating information about HIV/AIDS in Africa and rural dwellers don’t have access to such media due to lack of electricity. Meanwhile, discrimination is common among both youth and old ones. Even little ones who know about infection cannot differentiate between HIV and AIDS; they believe once you are infected with HIV, you have already been infected with AIDS. There should be more awareness on the disease in the rural areas.

AN INNOVATIVE LEARNING OPPORTUNITY
Karen Clinker, Pat Piskowski, Lorinda Christie-Jackobson; Northwestern Ontario Infection Control Network (NOICN), Sioux Lookout First Nations Health Authority (SLFNHA), First Nations and Inuit Health (FNIH)

Issue: In 2006, SLFNHA was contracted by the NOICN to complete an environment scan which identified an immediate need for education on reprocessing (cleaning, disinfection and sterilization) in nursing stations in isolated First Nations communities. After exploring a number of delivery options, a unique face-to-face conference was designed.

Project: The objectives for this reprocessing conference included:
- 16777216. Address identified knowledge gaps related to reprocessing.
- 16777217. Work collaboratively with participants to meet current best practices in Ontario.
- 16777218. Provide information in a manner that considered the unique learning needs of a specific target audience.

Results: A face-to-face, hands-on conference was held on October 8 and 9, 2008 in Thunder Bay. Participants were able to return to their communities with newly gained knowledge and practice skills and to immediately apply this new knowledge and practical skills in their day-to-day activities.

Lessons Learned: Very specific learning needs and educational challenges were addressed through innovative thinking and team effort. The development of a reprocessing manual and videotaped procedures will help to ensure ongoing quality assurance and education.

NOSOCOMIAL TRANSMISSION OF EXTENDED SPECTRUM-LACTAMASE (ESBL)-PRODUCING KLEBSIELLA PNEUMONIAE
Sam Macfarlane, Natalie Bruce, Virginia Rith, Kathryn Suh, Baldwin Toye, Karam Ramotar
The Ottawa Hospital, Ottawa, Ontario, Canada

Issue: Transmission of ESBL-producing Klebsiella pneumoniae was identified in 2 patients who successively occupied the same private room in an acute-care facility.

Project: To investigate and describe the nosocomial transmission of this ESBL-producing K. pneumoniae.

Results: On June 13 2008, Patient 1 (Mr. L) was admitted with a diagnosis of venous ulcers. Admission screening identified that he was MRSA colonized. He was placed in a private room, and contact precautions were initiated. On July 25 he was transferred to a private room (room 546) on the vascular surgery unit, with contact precautions maintained, where he remained until his discharge on September 25. On September 13, ESBL-producing K. pneumoniae was isolated from a clinical specimen; he was felt to be colonized and treatment was not given. Housekeeping performed a disinfection immediately after his discharge. Patient 2 (Mrs. H) was admitted to room 546 immediately after the room had been cleaned. On Mrs. H’s 25th day in this room, an ESBL-producing K. pneumoniae was isolated from her percutaneous endoscopic gastrostomy site. The two isolates were identical by pulsed-field gel electrophoresis. Environmental specimens were not obtained for culture.

Transmission May Have Resulted from Persistence of the Organism in the Patient Environment, Inadequate Cleaning and Disinfection of Shared Medical Equipment, or Transmission of an ESBL-Producing Organism Between Patients Still Occurred.

Despite documented environmental cleaning between occupancy of rooms, transmission of an ESBL-producing organism between patients still occurred. This finding highlights the need for a comprehensive strategy including reprocessing and the need for environmentally sensitive cleaning practices.
Control and then posted prominently in areas frequented by HCW. The aim of the newsletter was to provide frequent, relevant infection control information in a fun and colourful manner at minimum cost. To ensure it met the needs of the paediatric staff a one page survey was sent out 21 months after the initial newsletter was published.

Results: A total of 46 people responded to the survey. 69% of the respondents had read the newsletter and of those 65% read it monthly. 95% of the HCW who read Bug Corner stated they found it informative.

Lessons learned: The survey provided infection control with an overall view of HCW opinion of Bug Corner. From the responses HCW generally found Bug Corner colourful and interesting. However, a majority of the topics covered did not age and to.encourage distribution we then went on to provide a folder for each unit with all of the publications so that HCW can browse through it when time permits.

27-MIN INITIAL OUTBREAK MANAGEMENT PROCESS

Aurora Wilson, Bonnie-Jean Wilson, Sherrill Green, Providence Healthcare, Toronto, Ontario, Canada

Issue: Managing outbreaks (respiratory and/or enteric) without a systematic management process leads to high stress, role confusion, poor communication and safety risks. Providence conducted an analysis of its process then developed a quality improvement initiative on outbreak management process that is organized, systematic, timely and provides a high level of safety for all.

Results: A perception survey of HCWs learned that there was a need for better system and that they would benefit for a standardized system. A standardized system would improve infection control awareness among HCWs. A standardized system would assure that the same infection control interventions would be first provided. A standardized system would provide a minimum percentage of staff who are aware of the standardized process. A standardized system would be held more accountable than an unstandardized system. A standardized system would provide staff with a system that they would use. A standardized system would improve the infection control awareness of staff and patients. A standardized system would improve the infection control awareness of the patients themselves.

Lesson Learned: A perception survey of HCWs learned that there was a need for better system and that they would benefit for a standardized system. A standardized system would improve infection control awareness among HCWs. A standardized system would assure that the same infection control interventions would be first provided. A standardized system would provide a minimum percentage of staff who are aware of the standardized process. A standardized system would be held more accountable than an unstandardized system. A standardized system would provide staff with a system that they would use. A standardized system would improve the infection control awareness of staff and patients. A standardized system would improve the infection control awareness of the patients themselves.

OUTBREAK OF GASTROENTERITIS: WHAT DID WE LEARN?

Chantal Perpète1, Denise LeBlanc1, Shirley Tremblay1, Céline Crowe1,2

1Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada, 2Université de Montréal, Montréal, Québec, Canada

Issue: The management of an outbreak of viral gastroenteritis in a Geriatric Institute facility is a challenge. In November 2008, outbreaks of Norwalk virus were identified in the community of greater Montreal. Our facility, which has 2 buildings (A and B), had to face 2 episodes over an 8 week period.

Project: To describe the outbreak and present the intervention plan.

Results: During the first episode, 43 of out 306 patients (14%) and 8 out of 125 patients (6%) in building A and B respectively, were affected. Among staff members, the rate of illness was 6% in building A and 1.8% in building B. During the second episode, only building B was affected. Forty-one (41) out of 91 patients (45%) were affected. In this episode, 8% of staff members were affected. During the management of the outbreaks, several problems were identified: wandering patients, accessibility of isolation equipment, cohorting of staff members (healthcare workers and environmental services), adjusting for the needs of disinfection and cleaning and communicating with HCWs.

Lesson learned: All problematic issues identified during the outbreaks were addressed during a postmortem analysis. Results translated into the formulation of new communication policies with the staff, families and visitors. Ordering and resupplying of equipment, management of staff, adjustment for disinfection and cleaning all were implemented into our plan of action.

GET THE SHOT, NOT THE FLU: THE EXPERIENCES OF RESTRUCTURING AN INFLUENZA VACCINATION PROGRAM

Krista Maxwell, Seven Oaks General Hospital, Winnipeg, Manitoba, Canada

Issue: The experience of a large acute care facility in Toronto that provides rehabilitation/complex continuing care (Providence Hospital), long-term care (Cardinal Ambrozic: Houses of Providence) and community outreach (Providence Community Centre), with a total of 6,65 beds for patients and residents.

Results: There were 26 outbreaks of influenza in its facility since the new program has been introduced. The influenza vaccination rate since the introduction of the program. Finally, SOGH has not had an outbreak of influenza in its facility since the new program has been introduced.

Lesson learned: Ongoing stakeholder involvement is significant; Annual staff education is required but is time-consuming; A comprehensive tracking system is mandatory; Staff’s personal beliefs regarding vaccinations is to be considered; Staffing complementations and union contracts must be addressed with respect to hiring vaccination nurses.

THE DEVELOPMENT OF A KIT FOR THE RETURN OF PROBLEM SAFETY SYRINGES

Anne Burt, Linda Fletcher, Mental Health Centre, Whity, Ont, Canada

Safety syringes were introduced at Whity Mental Health Centre in March 2007. November 2, 2007 staff first raised concern of ongoing problems with the syringes. Because there had been no safe way to transport, busy staff tossed problem syringes in the sharps container, leading to the under reporting of defective syringes. Safety syringes are more complex design with more parts and the syringes are designed for detection during quality assurance. The manufacturer of any problem is needed with the item returned to the manufacturer to improve design making their product safer. As there were no commercial prepackaged kits available, we needed to develop a kit to enable staff to safely transport suspect syringes for investigation of the failure causation. With basic safety testing, IPAC staff put together a kit, using a clear VHS tape container that allowed for safer transportation of used syringes. The kit were handed out to users January 18, 2008 with a short education session. A PowerPoint presentation on use of the kit was available on the intranet for all staff. Prior to the problem Syringe Safety Kit only 1 problem syringe had been returned to management. Within 6 months of introduction we had 15 problem syringes returned in the kits. It is hoped that this presentation may stimulate commercial vendors to produce a safe tested product for the transportation of problem syringes.
GREAT, TREAT & MEET: AN ALTERNATIVE APPROACH TO INCREASE MENTAL HEALTH PATIENT PARTICIPATION IN INFECTION CONTROL/SAFETY EDUCATION
Jo-Anne Burt, Rebecca Yu, Linda Fletcher; Whirty Mental Health Centre, Whirty, Ontario, Canada
The Whirty Mental Health Centre (Centre) Infection Prevention and Control Practitioners (IPCs) have been including patients as well as health care workers in Infection Prevention and Control education programs like hand hygiene. As our inpatients improve, they are given privileges to attend activities throughout the Centre. With this increased movement it was felt that the IPCs could utilize the Centre to improve patient care content. For the participants infection control education to minimize transmission of organisms. The challenge was having patients attend and participate in Infection Control Education. To engage and maintain patient participation the “greet, treat & meet” approach was taken. During Infection Control Week, the fall of 2007, the participants held a West Nile Virus campaign, ICPs arranged to attend patient care unit community meetings. The ICP greeted all the patients and provided each with a small treat. When all patients were greeted and treated, the meeting (education) began promising that all who remained would be eligible for a prize. There was more active participation when a treat was given and with the potential of a prize at the end. During Infection Control Week, 147 of the 315 in-patients participated in patient education. In the weeks post education, many smiling patients greeted ICPs waving their hands say “I washed my hands.” Following the “greet, treat & meet” session the 2007-08 influenza vaccine rates for hospital inpatients were 51% with high risk areas reaching 81.3%. With the success of “greet, treat & meet” educational approach, it was decided to continue with this approach.

EXPLORING THE KEY CHALLENGES IN HAND HYGIENE IN AN AMBULATORY CARE OPERATING ROOM SETTING: DOES STAFF COMPLIANCE IMPROVE COMPLIANCE
Sonja Colham, Sonia Pagura, Jyvke Schideler-Taylor; Women’s College Hospital, Toronto, Ontario, Canada
Ambulatory Care is an emergent area of focus in infection control. Hand Hygiene (HH) is a well established principle in the reduction of infection rates after healthcare settings. In the past, there has been a strong push from key external stakeholders such as the Ministry of Health (MOH) and public health groups (including practitioners) to tackle this pervasive issue as it has significant financial and societal repercussions. In 2007, the Ministry conducted a review in hospital settings, excluding operating room environments, to establish HH rates amongst care-providers. The results led to the MOH mandating public hospital reporting of HH compliance to inform the public, and to encourage increased HH compliance that could reduce transmission rates in healthcare. Every hospital-based institution is committed to capturing compliance baseline rates as the platform for developing infection control strategies. Yet, one cannot apply infection standards in a generalized fashion across all care settings as the direct HH compliance, interaction and levels of sterility are quite different. An additional layer of complexity is the framework which Ambulatory Care Settings operate: physicians operating in Ambulatory Care Setting come from multiple sites and may have vastly different practices within each organization. The goal of the HH initiative at Women’s College Hospital (WCH) was to implement a staged education initiative to increase HH compliance and change practice. This multi-pronged approach includes several staged audits to evaluate which education strategy resulted in the greatest increase in compliance, as well as sustainability of HH levels. The modulated approach included web-based learning, didactic education sessions, self-learning and visual education prompts. Preliminary results have demonstrated a 40% increase in overall HH compliance within the operating room at WCH.

ZAP VAP: PREVENTION OF ADULT VENTILATOR-ASSOCIATED PNEUMONIA IN A 12-BED ICU COMMUNITY HOSPITAL
Kristina Desjardine, Denis Binette; Queen'sway Carleton Hospital, OTTAWA, ON, Canada
Poster Abstract: The abstract will focus on the successful launch and implementation of the Safer Healthcare Now VAP Bundle initiatives.

Background: We have a 12-bed closed ICU with six intensivists who rotate and cover the ICU on a weekly basis. We operate 8 BIP 840 mechanical Ventilators, with 24-hour Respiratory Therapist coverage. Infection Control has tracked VAP rates since 2005 and data showed through benchmarking our VAP rate was above the 90th percentile. Methods: We started in March 2008 with gathering baseline data on 15 patients, after which we fully implemented the 4 components of the VAP Bundle including the use of the EVAC tube. This was done as part of an educational review and focus which included challenges and changes in practice. During the initial launch of the Bundle, the EVAC tube was trialled and evaluated in the ICU. A VAP Bundle checklist was created and put into daily use by the RNs and RNs. These stats were compiled and scored on a monthly basis by Infection Control in collaboration with Decision Support.

The results of which were then reported to SH.

Results: Surveillance showed that we were VAP free for 6 months from March 2008-August 2008. We continue to provide support, communication, education and feedback to the ICU team. In addition the trial of the EVAC tube resulted in hospital wide implementation except for the OR.

Conclusion: We have successfully demonstrated that implementation of the VAP Bundle can result in an overall decrease in VAP Infection Rates.

DEVELOPMENT OF A RNIC NON-ACUTE CARE INFECTION CONTROL PROFESSIONAL (ICP) TRAINING PROGRAM (NACICP) IN ONTARIO
Pat Piskawetz, Janet Allen, Anne Bialachowski, Nora Boyd, Karen Clinker, Colette Ouellet, Ponka Brandy, Volkening Grace, Walker Marianne Regional Infection Control Networks, Ontario, Canada
Background: RNICs identified a need for a training program for ICPs in non-acute care settings through a needs assessment.

A working group was established in 2006 to review the needs assessment data and explore the feasibility of a NACICP training program. After exploring several options, the group formed an unique collaborative program for RNICs in non-acute care settings. Administrative processes for the program were established with one network leading the program, one providing administrative support for the technological advancement of the program and one network guiding the associated mentorship program.

The project: The program consists of 11 modules covering all aspects of IPC practice including the development of a unique training tool. The modules are intended to provide a DVD of their presentation, compose pre and post test questions and develop two case studies. Each of the 14 RNICs enrols up to 2 students, provides direct mentorship and access to resources for the students. All course materials and supporting documentation are mailed to the participants monthly. There is a monthly teleconference to discuss the module assignments and respond to student queries. The marks from the case studies, midterm and final exam comprise the students’ marks. A passing grade of 60% is needed to successfully complete the program. CHICA endorsement is currently being considered.

ANTIMICROBIAL RESISTANCE AMONG NOSOCOMIAL ISOLATES IN A PUBLIC HOSPITAL IN PERU
Yuri Garcia-Cortez, Jaime Alvarezcano Berroa, Raul Montalvo Olivo, Ruben Dario Vasquez Becerra
1San Marcos University, Lima, Peru, 2Dos de Mayo Hospital, Lima, Peru, 3Care Center "Raul Patracuo Puig", Lima, Peru.

Issue: Emergence of multiresistant strains of hospital pathogens has presented a challenge. Bacteriological surveillance of the cases of nosocomial infections is crucial for developing antibiotic stewardship programs.

Methods: A prospective study was undertaken during January through December 2007 among 802 patients from surgery, medicine, pediatric and gyneco-obstetric wards at Dos de Mayo Hospital in Lima, Peru. Patients were tracked for the occurrence of nosocomial infections (NI) through clinical bacteriologically. Antibiotic susceptibility testing was undertaken using Kirby-Bauer disc diffusion method. The overall infection rate was 26.1% (102). The VAP rate was 12.8% (18/102). The most common NI was the common NI (23.47%), followed by pseudomonas (19.8%) and urinary tract infection (18.5%). Ninety nine percent of the isolates were bacterial. More than 70% of the Nos were caused by Gram-negative bacteria predominantly Pseudomonas aeruginosa and Escherichia coli. Almost 5% of the isolates were resistant to all the antibiotics for which susceptibility was tested, the rest were sensitive to amikacin, cefoperazone sulbactam, cotrimoxazole, methicilin, teicoplenin, vancomycin, rifampicin, imipenem, aztreonam and linezolid, either independently or in combination. The proportion of MRSA was 43%. Resistance to a particular antibiotic among the new isolates was 20-40%. The development of a layer of complexity is the framework where hospital infection prevention and control are not apparent. Issues such as CPR steps and acute care “codes”, yet evaluations of the effectiveness of this program, one providing administrative support for the technological advancement of the program and one network guiding the associated mentorship program.

Project: The program consists of 11 modules covering all aspects of IPC practice including the development of a unique training tool. The modules are intended to provide a DVD of their presentation, compose pre and post test questions and develop two case studies. Each of the 14 RNICs enrols up to 2 students, provides direct mentorship and access to resources for the students. All course materials and supporting documentation are mailed to the participants monthly. There is a monthly teleconference to discuss the module assignments and respond to student queries. The marks from the case studies, midterm and final exam comprise the students’ marks. A passing grade of 60% is needed to successfully complete the program. CHICA endorsement is currently being considered.

COMMUNITY HEALTH CENTRE: INFECTION CONTROL PARTNERSHIP
Rebecca Hamlin, Lori Jesosome-Croteau; Capital District Health Authority, Nova Scotia, Canada
Issue: The community health center (CHC) setting provides ample opportunity for the transmission of microorganisms from person-to-person and through contaminated fomites, environmental surfaces, and reusable medical equipment. Many independent CHCs do not have dedicated infection control resources or easy access to infection prevention and control expertise.

Project: At the request of the CHC’s management, an infection control audit was undertaken and several key recommendations made. An ongoing action plan was developed by the CHC based on these recommendations. Continued support was provided by the infection control practitioners and key contacts within the health district were identified. A follow up interview was completed 6 months after the initial review.

Results: Key areas for improvements were prioritized based on patient safety and available resources. Some of the improvements undertaken included: initiation of a respiratory hygiene program in the reception area; moving all sterilization to the local hospital; cleaning and disinfection of non-sterile medical devices between patient visits; development of an infection control policy binder; and improvements in the handling and storage of sterile supplies.

Lessons learned: Infection control professionals can provide a valuable service to their community through outreach consultation and collaborative efforts. In future, the development of a standardized audit tool and report template would facilitate the process.

ADDITIONAL PRECAUTIONS POCKET CARDS: DEVELOPMENT OF A NEW RESOURCE FOR ACUTE AND LONG TERM CARE
Tim Crombey, Christine Mousa; South Western Ontario Infection Control Network, London, ON, Canada
Issue: In many acute care and long-term care organizations there can be infrequent indications for the use of Dropet, Contact, and Airborne precautions. In such lower-incidence settings, health care workers may benefit from reminders. The use of precaution signs and pocket cards are examples of such reminders. Pocket cards have been used for other care issues such as CPR steps and acute care “codes”; yet evaluations of implementation of this tool in the practice area of infection prevention and control are not apparent.

Project: The South Western Ontario Infection Control Network created pocket cards addressing proper Personal Protective Equipment (PPE) use for Additional Precautions. Both Acute Care and Long Term Care versions were created based on the Provincial Infections Diseases Advisory Committee’s (PIDAC) Best Practice Guidelines in Ontario.
The cards were distributed to 923 staff in Long Term Care, and 1096 staff in Acute Care in December 2008. The pilot concluded in February 2009.

Results: Anecdotal results prior to the extensive survey of participants showed an enthusiastic response and observed use of the resource. Feedback received from the pilot will be applied to the final version of the resource.

Lessons learned: The pocket-card format used in this project offers healthcare workers a convenient resource that will assist them in protecting themselves and others through the effective use of PPE. An implementation barrier to the use of the cards is the adoption of a standardized colour scheme for Additional Precautions across participating organizations.

RESPIRATORY ALGORITHMS: BREATHING EASIER ABOUT PATIENT MANAGEMENT

Gail Busto, Sydnei Scharf, Elizabeth Bryce, Serena Snow
Vancouver Coastal Health, Vancouver, British Columbia, Canada

Issue: Vancouver Coastal Health region sees 308,000 Emergency Department (ED) patients annually, approximately 125 new cases of tuberculosis are diagnosed. Many ED patients have an undiagnosed respiratory illness and could pose an infectious risk to staff and other patients. A standard approach to patient management to reduce the risk of secondary exposures to potentially communicable respiratory infections was devised and evaluated.

Project: The algorithm was introduced in 2003 at Vancouver General Hospital (VGH), and refined during introduction at Lions Gate (2006) and Richmond General Hospitals (2008). Directions for triage, isolation, barrier precautions, housekeeping and patient designation when admitted are outlined. An electronic flag identifies the patient as they progress through the hospital; an automated electronic census identifies flagged cases daily to the ICP.

Results: During the past four years, 1719 patients have been flagged at VGH with an average of 3.4 days isolation for non-TB patients and 10.2 days for TB cases (n=111). The number of post-exposure TB follow-ups declined from up to 10/year pre algorithm to zero. Staff scored the algorithm as 4.6/5 for ability to protect with slightly lower scores for accessibility to isolation rooms, flagging instructions, and use of protective eyewear.

Lessons learned: Implementation highlighted the need to a) include all stakeholders, b) provide adequate resources (barriers, isolation rooms, adequate ICP staffing for follow-up), c) clearly delineate roles and responsibilities, d) ensure consistent use by all professions, and e) embed in practice to ensure sustainability.

BAD BUG IN BPTU (BURNS PLASTICS AND TRAUMA): LESSONS LEARNED FROM AN ACINETOBACTER BAUMANNII OUTBREAK

Mary Cameron-Lane, Gail Busto, Elizabeth Bryce, Sydnei Scharf, Vancouver General Hospital, Vancouver, British Columbia, Canada

Issue: Multidrug Resistant Acinetobacter baumannii (MDR ACBA) is recognized worldwide as a nosocomial pathogen. The outbreak in an outbreak of MDR ACBA on a 24-bed Burns, Plastics and Trauma unit (BPTU) was an internationally transferred patient.

Background: The outbreak involved a total of eight patients, the index case, five BPTU patients and two ICU patients. Six patients developed infections (bone, sputum, blood, wounds, urine) with some requiring colistin therapy.

Investigation: One of eighteen environmental cultures was found to be positive for the same biotype of MDR ACBA. This culture was taken from a drain grate structure in a common burn shower room that, when dismantled, was found to contain pieces of the same biotype of MDR ACBA.

Investigation: This culture was taken from a drain grate structure in a common burn shower room that, when dismantled, was found to contain pieces of the same biotype of MDR ACBA. The proper cleaning of this drain was overlooked prior to our investigation. The epidemiology link of the first identified patient in the ICU strongly suggested hands (health care workers) as the means of transmission. Environmental contamination was not found in the ICU.

Lessons Learned: Initially our guidelines focused on those patients arriving from the Middle East. Our experience however, has demonstrated the need to broaden our screening protocol to include all international transfers. To date, we have identified MDR ACBA in patients from the following countries; Afghanistan, USA (Las Vegas), Egypt, Hong Kong and Vietnam. This outbreak underlines the importance of examining the environment as well as focusing on contaminated hands as sources of transmission.

QUALITY CONTROL FOR CHEMICAL DILUTION SYSTEMS USED IN HEALTHCARE IS INDISPENSABLE

Cindy O’Neill, Lee Ramage, Loretta Wyatt, Lisa Ballantyne; Hamilton Health Sciences, Hamilton, Ontario, Canada

Background: Chemical dilution control systems are used in healthcare to dilute concentrated disinfectants to an ideal strength for effective environmental decontamination. These systems, compared to manual dilution methods, are economical, efficient and promote a safer workplace. However, quality control (QC) and preventative maintenance standards to assure performance are lacking in the cleaning and healthcare industry. The automated systems used to dilute concentrated accelerated hydrogen peroxide (AHP) products for disinfection cleaning were assessed for reliability at Hamilton Health Sciences-Henderson Hospital site.

Method: Three control systems used to dilute AHP concentrates: 7% (Percept™) at 1:16 dilution (0.5%) and 3% (PerDiem™) at 1:256 dilution (0.01%), were evaluated for reliability over 30 days. Virox AHP indicator test strips were used to check use-dilution of Percept (5000 ppm AHP) and PerDiem (1000 ppm AHP). QC was repeated if the initial test was outside the acceptable range. Service was arranged when repeat QC failed. Ready to use AHP product was employed until problem resolved.

Results: Overall, nine QC failures were detected on all systems during the 30 day testing: five failures on one system, three on the second and one on the third. Seven failures involved Percept below (<= 500 ppm) acceptable concentration and two involved PerDiem above (500 ppm) required concentration.

Conclusion: Disinfectants must be used in the dilution specified by the manufacturer for optimal decontamination. Although there is a benefit to using automated dilution systems in healthcare, findings show that attention must be given to quality control and preventative maintenance to assure optimum results.

WHERE IS YOUR HOSPITAL’S PANDEMIC ZONE?

Jen Tomlinson
Concordia Hospital, Winnipeg, MB, Canada

Issue: A pandemic influenza is a global threat that is overdue for a repeat emergence. The impact of the pandemic regarding severity, age distribution and extent of spread will be unknown until the virus spreads among the human population. Hospital leaders must prepare now for pandemic influenza in order to reduce morbidity and mortality outcomes.

Project Description: Preliminary strategies to create a designated pandemic influenza area were developed by a community hospital pandemic planning committee using current information. A literature review was completed and an environmental scan of the hospital performed. Key areas included isolation considerations, hospital structure, supplies, executive support and potential challenges.

Results: Findings suggested renovation considerations may be challenging, protocols and education are required without delay, and the availability of supplies imply an ambiguous outcome. Cost implications were factored into areas of concern. Limited information from existing articles is available to create pandemic areas, although national guidelines regarding pandemic influenza management of symptomatic patients remain forthcoming. The Winnipeg region has preliminary pandemic planning recommendations for designated cohort areas and was a significant resource.

Lessons Learned/Implications: Pandemic planning is time consuming and requires the commitment of key stakeholders. Although the development of a pandemic area will be complex, preparedness plans will facilitate an accelerated response for hospital settings. Intensifying pandemic awareness among the leadership population and infection control professional groups is necessary as a heightened alertness may lower the clinical attack and slow pandemic development.
Watch for your personal copy of CHICA E-News

CHICA-Canada’s monthly electronic newsletter keeping you informed of current news and events.
In Canada, an estimated 220,000 infections acquired in healthcare facilities and 8,000 deaths attributable to these infections occur annually.\(^{(1)}\)

**AMD infection control products help to reduce infections by between 52\(^{(3)}\) and 91\(^{(2)}\)\%

A highly effective, low cost solution
- Broad spectrum effectiveness and proven effective at preventing dressing colonisation against MRSA, VRE & Acinetobacter Baumannii and many more
- No known resistance
- Works within and through the dressing
- Gentle to healthy cells

\(^{(1)}\) Zoutman, DE, Ford DB, Brye E et al. The state of infection surveillance and control in Canadian Acute Care Hospitals; Am J Infect Control, 2003; 31:266-73.

\(^{(2)}\) The Reduction of Vascular Surgical Site Infections with the Use of Antimicrobial Gauze Dressing; Robert G. Penn, MO, Sandra K. Vymida, RN, MSN, CIC, Sylvia Roberts, RN, Susan Miller, RN, BS, CIC. Dept. of Epidemiology, Nebraska Methodist Hospital, Omaha, NE, USA. Observation of Nosocomial Surgical Site Infection rates with Utilization of Antimicrobial Gauze Dressing in an Acute Care Setting: Mary Jo Beneke, RN, BSN, CWOCN; Josephine Doner, RN, BSN, MA, CIC. Yuma Regional Medical Center, Yuma, AZ.

\(^{(3)}\) Observation of Nosocomial Surgical Site Infection Rates with Utilization of Antimicrobial Gauze Dressing in an Acute Care Setting: Mary Jo Beneke, RN, BS, CWOCN; Josephine Doner, RN, BSN, MA, CIC. Yuma Regional Medical Center, Yuma, AZ.
Interactive edition
of The Canadian Journal of Infection Control available online

With print and electronic communication operating hand-in-hand more than ever before, we are pleased to advise you that The Canadian Journal of Infection Control is available online in a highly interactive format. A user-friendly, interactive Media Rich PDF format that includes:

- Active hyper-links to all websites and emails contained in the publication
- Active links to the specific stories from the front cover and contents page
- Active links to advertiser websites from their ads

See the interactive Canadian Journal of Infection Control at www.chica.org

Quality Infection Prevention Education from the Leading Experts at the

APIC 2009 Annual Conference

June 7 -11 in Ft. Lauderdale, Florida

CHICA Members receive reduced APIC member rates. Register Today.

Visit www.apic.org for details and travel tips
C. DIFFICILE OUTBREAK MANAGEMENT

REScue™ BREAKS THE CHAIN OF INFECTION

REScue™ is the only DIN registered ready-to-use surface Sporicide. Visit the C. difficile OUTBREAK section at www.virox.com for information on products, protocols, references, support documents and endorsements, or call 1-800-387-7578.
Today I learned... it's time to go passive.

Universal Bevel, a cut above the rest.
- Make insertion more comfortable for you and your patients.
- New needle geometry creates a flexible pathway designed for easier catheter insertion, less tearing and faster healing.

Approach with confidence.
- Universal Bevel allows a wider choice of insertion angles.
- Choose the approach that helps achieve the best results for you and your patient.

Passive is preferred.
You need the best when it comes to safety, so get the high activation rate of our passive system¹ and its proven performance in reducing needlestick injuries.²,³

Take action. Go passive.
Contact your B. Braun representative today to schedule a demonstration. Call 1-877-949-9529 or visit us at www.bpassive.bbraunusa.com.

www.bbraunusa.com
CHICA-Canada
2009 Trade Show – Delta St. John’s

Exhibit Hall Floor Plan

Exhibit Hall Hours

Official Opening:
Monday, May 11, 7:00 - 9:00 pm (Opening Reception)

Tuesday, May 12
12:00 - 2:00 pm – Lunch in Exhibit Hall
3:00 - 3:30 pm – Refreshment Break

Wednesday, May 13
12:00 - 2:00 pm – Lunch in Exhibit Hall
3:00 - 3:30 pm – Refreshment Break

Crush Lobby Floor Plan
Putting Protection within Easy Reach

Protection Organizer
LD-035

Safeguard health-care providers with Protection Organizers that provide easy access to (PPE) personal protective equipment.

BOWMAN
800 962-4660
www.BowmanDispensers.com
<table>
<thead>
<tr>
<th>COMPANY</th>
<th>BOOTH NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M Canada</td>
<td>EH 49-52</td>
</tr>
<tr>
<td>Abatement Technologies Limited</td>
<td>EH 46</td>
</tr>
<tr>
<td>Accreditation Canada</td>
<td>CB 2</td>
</tr>
<tr>
<td>AMG Medical</td>
<td>EH 2-3</td>
</tr>
<tr>
<td>Angus Medical Inc.</td>
<td>EH 6</td>
</tr>
<tr>
<td>Ansell</td>
<td>EH 28</td>
</tr>
<tr>
<td>Arjo/Huntleigh Healthcare</td>
<td>EH 25-26</td>
</tr>
<tr>
<td>Baxter Corporation</td>
<td>EH 33-43</td>
</tr>
<tr>
<td>BD Canada</td>
<td>EH 53/54</td>
</tr>
<tr>
<td>BioNuclear Diagnostics Inc.</td>
<td>CL 65</td>
</tr>
<tr>
<td>BioScience Laboratories Inc.</td>
<td>CL 61</td>
</tr>
<tr>
<td>Bowman Medical</td>
<td>EH 39, 40</td>
</tr>
<tr>
<td>Butcher’s</td>
<td>CL 59</td>
</tr>
<tr>
<td>Canadian Agency for Drugs and Technologies in Health</td>
<td>T 4</td>
</tr>
<tr>
<td>Canadian Journal of Infection Control</td>
<td>T 4</td>
</tr>
<tr>
<td>Canadian Patient Safety Institute</td>
<td>T 15</td>
</tr>
<tr>
<td>Canadian Standards Association</td>
<td>CB 3</td>
</tr>
<tr>
<td>Canadian Vascular Access Association</td>
<td>T 9</td>
</tr>
<tr>
<td>Cardinal Health Canada</td>
<td>EH 36, 37</td>
</tr>
<tr>
<td>Cardiomed Supplies Inc.</td>
<td>EH 30</td>
</tr>
<tr>
<td>CCD Health Systems</td>
<td>EH 23, 24</td>
</tr>
<tr>
<td>Certification Board of Infection Control (CBIC)</td>
<td>T 7</td>
</tr>
<tr>
<td>CHICA Newfoundland Labrador/Run for IFIC Registration</td>
<td>T 1-3</td>
</tr>
<tr>
<td>CKM Healthcare</td>
<td>CL 64</td>
</tr>
<tr>
<td>Community and Hospital Infection Control (CHICA-Canada)</td>
<td>T 13-14</td>
</tr>
<tr>
<td>Convatec Canada Ltd.</td>
<td>EH 14</td>
</tr>
<tr>
<td>Coviden (formerly Tyco Healthcare)</td>
<td>EH 32-34</td>
</tr>
<tr>
<td>Daniels Sharpsmart Canada Ltd.</td>
<td>EH 19</td>
</tr>
<tr>
<td>Deb Canada</td>
<td>EH 29</td>
</tr>
<tr>
<td>Ecolab Healthcare</td>
<td>EH 17, 18</td>
</tr>
<tr>
<td>Ekotek Global Inc.</td>
<td>EH 48</td>
</tr>
<tr>
<td>Falconaire Inc.</td>
<td>CL 55</td>
</tr>
<tr>
<td>Getinge Canada Limited</td>
<td>EH 13</td>
</tr>
<tr>
<td>Gojo Industries Inc.</td>
<td>EH 8, 9</td>
</tr>
<tr>
<td>Hollister Limited</td>
<td>EH 41</td>
</tr>
<tr>
<td>Hygie Canada Inc.</td>
<td>EH 42</td>
</tr>
<tr>
<td>Infection Prevention Society</td>
<td>T 8</td>
</tr>
<tr>
<td>International Federation of Infection Control (IFIC)</td>
<td>T 5</td>
</tr>
<tr>
<td>Interseam Technologies</td>
<td>EH 22</td>
</tr>
<tr>
<td>Johnson and Johnson Medical Products</td>
<td>EH 44, 45</td>
</tr>
<tr>
<td>JohnsonDiversor</td>
<td>CL 59</td>
</tr>
<tr>
<td>LauraLine Skincare</td>
<td>EH 47</td>
</tr>
<tr>
<td>Les enterprises Solumed – A 3M Canada Company</td>
<td>EH 49</td>
</tr>
<tr>
<td>Medline Canada</td>
<td>EH 20, 21</td>
</tr>
<tr>
<td>Metrex</td>
<td>CL 63</td>
</tr>
<tr>
<td>Micro-Scientific Industries</td>
<td>CB 1</td>
</tr>
<tr>
<td>Pharmax Limited</td>
<td>EH 1</td>
</tr>
<tr>
<td>Pinch LeBlanc Environmental</td>
<td>CL 66</td>
</tr>
<tr>
<td>Provincial Infection Control Network of BC (PICNet)</td>
<td>T 12</td>
</tr>
<tr>
<td>Professional Disposables International Inc.</td>
<td>EH 38</td>
</tr>
<tr>
<td>Public Health Agency of Canada</td>
<td>CL 70</td>
</tr>
<tr>
<td>Regional Infection Control Networks of Ontario (RICNs)</td>
<td>T 10, 11</td>
</tr>
<tr>
<td>Remington Medical Equipment</td>
<td>EH 12</td>
</tr>
<tr>
<td>rSolutions</td>
<td>CL 69</td>
</tr>
<tr>
<td>Sage Products Inc.</td>
<td>CL 68</td>
</tr>
<tr>
<td>SciCan</td>
<td>EH 10, 11</td>
</tr>
<tr>
<td>Smith & Nephew</td>
<td>EH 7</td>
</tr>
<tr>
<td>Southmed</td>
<td>CL 67</td>
</tr>
<tr>
<td>Stryms Canada Inc.</td>
<td>EH 4, 5</td>
</tr>
<tr>
<td>The Stevens Company</td>
<td>EH 31</td>
</tr>
<tr>
<td>Stryker Canada</td>
<td>CB 4</td>
</tr>
<tr>
<td>T. B. Clitt Ltd.</td>
<td>CL 56</td>
</tr>
<tr>
<td>Trimline Medical Products Corp.</td>
<td>CL 64</td>
</tr>
<tr>
<td>UberFlex</td>
<td>CL 57</td>
</tr>
<tr>
<td>Vernacare</td>
<td>EH 15</td>
</tr>
<tr>
<td>Virox Technologies Inc.</td>
<td>EH 16, 27</td>
</tr>
<tr>
<td>Watts Industries (Canada) Inc.</td>
<td>CL 58</td>
</tr>
<tr>
<td>Webber Training Inc.</td>
<td>T 6</td>
</tr>
<tr>
<td>Wood Wyant</td>
<td>CL 60</td>
</tr>
</tbody>
</table>

EH = Salon A/B
CL = Crush Lobby
CB = Conception Bay
T = Table near Registration Area
BioNuclear Diagnostics Inc. Booth CL 65
1791 Albion Road, Toronto, ON M9W 5S7
416-674-1545
www.bndnc.com

BioScience Laboratories Inc. Booth CL 61
300 N. Willson Avenue, Suite 1
Bozeman, Montana USA 59715
406-587-5735
www.biosciencelabs.com
Clinical study and laboratory services and guidance regarding federal regulatory agency requirements for healthcare, pharmaceutical, personal care and consumer products markets.

Bowman Booth EH 39-40
17130 – 51st Avenue NE
Arlington, WA 98223
800-692-4660
www.BowmanDispensers.com
BOWMAN Protection Organizers and Respiratory Hygiene Stations deliver added efficiency to your infection prevention efforts by providing PPE when and where you need it.

Butcher’s/JohnsonDiversey Booth CL 59
2401 Bristol Circle
Oakville, ON L6H 6P1
800-668-3131
www.butchers.com
Supplier of AHP disinfectants and other high performance cleaning solutions.

Canadian Agency for Drugs and Technologies in Health Booth T 4
Beothuck Building, 4th Floor, 20 Crosbie Rd.
St. John’s, NL A1B 3Y8
709-722-8883
www.cadth.ca
National body that provides Canada’s federal, provincial, and territorial healthcare decision makers with credible, impartial advice and evidence-based information about the effectiveness and efficiency of drugs, healthcare devices, equipment, and procedures.

Canadian Journal of Infection Control Booth EH A
3rd Floor, 2020 Portage Ave.
Winnipeg, MB R3J 0K4
866-985-9789
aran@kelman.ca
The official publication of the Community & Hospital Infection Control Association-Canada.

Canadian Patient Safety Institute Booth T 15
10-1730 St. Laurent Blvd.
Ottawa, ON K1G 5L1
613-730-7322
www.handhygiene.ca
Come visit us at our booth to learn about our national hand hygiene campaign, tool kit, and training for our hand hygiene audit tool.

Canadian Standards Association Booth CB 3
5060 Spectrum Way, Suite 100
Mississauga, ON L4W 5N6
416-747-4040
www.cssa.ca

Canadian Vascular Access Association Booth T 9
685 McCowan Road, PO Box 66572
Toronto, Ontario M1J 3N8
416-696-7761
www.cvaas.info

Cardinal Health Canada Booth EH 36-37
1000 Tesma Way, Vaughan, ON L4K 5S
888-871-5945
www.cardinalhealth.ca
Manufacturer and distributor of medical products from over 400 manufacturers to hospitals, surgery centers, laboratories, long-term care facilities, and physicians offices throughout Canada.

CardioMed Supplies Inc. Booth EH 30
199 Saint David Street, Lindsay, ON K9V 5K7
705-328-2518
www.cardiommed.com

CCD Health Systems Booth EH 23-24
254, 130 Chippewa Road
Sherwood Park, AB T8A 6A2
780-416-4414
www.ccdsystems.com
The Canadian reseller of ICNet, the leading provider of infection control software. ICNet is a web-based HAI case management and surveillance tool, providing real-time monitoring to minimize risk.

Covidien (formerly Tyco Healthcare) Booth EH 32-34
7300 Trans-Canada Hwy.
Pointe-Claire, QC H9R 1C7
877-664-8926
www.covidien.com

Daniels Sharpsmart Canada Ltd. Booth EH 19
52 Bramsteele Road, Unit 8
Brampton, ON L6W 3M5
905-793-2986
www.danielsinternational.com
Providing reusable sharps container system that is safer to use. It reduces plastic waste generated which is better for the environment.

Deb Canada Booth EH 29
PO Box 730, 42 Thompson Road West
Waterford, ON N0E 1Y0
519-443-8697
www.debcanada.com
Our research into point of care and infection control programs are designed to increase optimum hand hygiene compliance; the results being reduced infections to patients and caregivers alike.

Ecolab Booth EH 17-18
5105 Tomken Road
Mississauga, ON L4W 2X5
905-238-0170
www.ecolab.com
Offering healthcare professionals the broadest selection of skin care, surface disinfection and instrument cleaning products available. The broad and innovative product line and high quality service and support make Ecolab the “total solutions” brand; providing people, support, research, and selection for infection prevention.

Ekotek Global Inc. Booth EH 48
129 Fielding Road
Lively, ON P3Y 1L7
800-480-4131
www.ekotek.ca
The DEKO 190 Ward Disinfector is a cost-effective, large capacity bedpan and utensil washer. It provides a versatile and economical ward level infection control solution.

For more information:
Telephone: 1-800-257-5592 Facsimile: (519) 895-2374
www.lauralineskincare.com
Kitchener, Ontario

The Laura Line family of skin care products include Creams, Lotion and Antibacterial Soaps, Sanitizing Gel and Laura Line Moisturizing Creams.
All of these Products have been specifically formulated for frequent hand washers using the finest skin conditioners and moisturizers available.
Lauraline Skin Care
30 McLean Court
Kitchener, ON N2R 1B1
800-257-5592
www.lauralineskinca.com

Les entreprises Solumed – A 3M Canada Company
2305 Wyecroft Road
Oakville, ON L6L 6R2
800-396-6996
www.solumed.ca

Medline Canada
1717 West Collins Avenue
Orange, CA 92867
714-516-7788
www.medline.ca

Metrex
1717 West Collins Avenue
Orange, CA 92867
714-516-7788
www.metrex.com

Micro-Scientific Industries
1225 Carnegie Street, Suite 101
Rolling Meadows, IL 6008
847-454-0835

Pharmax Limited
80 Galaxy Boulevard, Unit 4
Toronto, ON M9W 4Y6
416-675-3333
www.pharmax.ca

From eradication of biofilms to destruction of prions, our chemistry continues to chart new frontiers. Now a series of all-natural antimicrobials that are broad-spectrum is the next breakthrough.

Pinchin LeBlanc Environmental
27 Austin Street, 2nd Floor
St. John’s, NL A1B 4L1
709-754-4490

Johnson and Johnson Medical Products
200 Whitehall Drive
Markham, ON L3R 0T5
800-268-5577
www.sterrad.com

Intersteam Technologies
170 Princess Street
Hamilton, ON L8L 3L3
905-526-1453
www.interstream.com

The proven power of heat combined with Thermal Accelerated Nano Crystal Sanitation Technology kills C. diff spores, MRSA, VRE, and more with a 5-second contact.

JohnsonDiversey
2401 Bristol Circle
Oakville, ON L6H 6P1
800-668-3131
www.johnsondiversary.com

Supplier of AHP disinfectant and other high performance cleaning solutions.
Smith & Nephew
2250 Boul. Alfred Nobel, 3rd Floor
St-Laurent, QC H4S 2C9
514-956-1010
www.smith-nephw.com

Southmedic
50 Alliance Boulevard
Barrie, ON L4M 5K3
800-463-7146
www.southmedic.com

Steris Canada, Inc.
6280 Northwest Drive
Mississauga, ON L4W 1J7
800-661-3937
www.steris.com

Virox Technologies Inc.
770 Coventry Road
Oakville, ON L6H 6R1
800-387-7576
www.virox.com

Steris Canada, Inc.
6280 Northwest Drive
Mississauga, ON L4W 1J7
800-661-3937
www.steris.com

Featured products include SixCess™ Class 6 Chemical Indicators and Challenge Packs, Resert™ Accelerated Hydrogen Peroxide High Level Disinfectant, and Prolytic™ Ultra Concentrate Enzymatic Detergents.

Finger Guard™
Clear Protective Finger Cover
Powder Free • Latex Free

Protection at your Finger Tips
Eliminate Cross Contamination between Pulse Oximeter Probe and Patient:

- Protection for patient and pulse oximeter probe.
- Provides accurate pulse oximeter measurements.
- A necessary and vital tool in the fight against nosocomial infection.

Features and Benefits of Finger Guard™
- Eliminates need for costly, single use disposable probes.
- Offers a cost-effective solution to nosocomial infection.
- Clear protective finger cover.
- Powder free, latex free.
- Easy Application, easy to dispense.
- Convenient, non-absorbent dispenser box – Simply wipe off to clean.
- Universal application – ICU to EMS.

McARTHUR MEDICAL SALES INC.

McArthur Medical Sales Inc.
1846 5th Concession West
Rockton, ON LOR 1X6
T+ 800.996.6674 519.622.4030
F+ 519.622.1142
mmsi@mcarthumcalmedical.com
www.mcahthumcalmedical.com

The Stevens Company
425 Railside Drive
Brampton, ON L7A 0N8
905-791-8600
www.stevens.ca
Canada’s oldest and largest physician supply company since 1874.

Stryker Canada
45 Innovation Drive
Hamilton, ON L9H 7L8
905-690-5700
www.stryker.com

T. B. Clift Ltd.
34 O’Leary Avenue
St. John’s, NL A1B 2C7
709-733-6850

Trimline Medical Products Corp.
34 Columbia Road
Branchburg, NJ 08876
800-526-3538
www.trimline.us
Manufacturers of blood pressure cuffs, stethoscopes and aneroids for all applications, including isolation and quarantine. TRIMLINE Medical pioneered the industry’s first cuff standardization program.

Uberloo
140 Water Street
Charlottetown, PE C1A 1A7
902-628-8566
www.uberloo.com
Introducing handsfree locking restroom door; health-care doorway hand sanitizer reminder system; world’s first global symbol for superior hygienic restrooms.

Vernacare
150 Norfinch Drive, Unit 1
Toronto, ON M3N 1X6
800-268-2422
www.vernacare.com
Vernacare is an established world leader providing environmentally responsible solutions for human waste disposal that improves infection control and workplace practices.

Virox Technologies Inc.
2770 Coventry Road
Oakville, ON L6H 6R1
800-387-7576
www.virox.com
The Accelerated Hydrogen Peroxide® (AHP®) technology offers a broad array of products ranging from surface cleaners and disinfectants, instrument cleaners, high level disinfectants, chemical sterilizers and hand sanitizers.

Watts Industries (Canada) Inc.
5435 North Service Road
Burlington, ON L7L 5H7
905-332-4090
www.wattsind-usa.ca

Webber Training Inc.
58 Lambert Drive
Belleville, ON K8N 4K6
800-363-5376
www.webbertraining.com
Teleclass education lecture series by the world’s top experts on infection control topics. Educational tools for infection control professionals; trainer’s resource for infection control (www.trainers-resource.com).

Wood Wyant
3025 rue Joseph-Armand-Bombardier
Laval, QC H7P 6C5
450-680-9700
www.woodwyant.com

2009 NATIONAL EDUCATION CONFERENCE

Sage Products Inc.
3909 Three Oaks Road
Cary, IL 60013
800-323-2220
www.sageproducts.com

SciCan
1440 Don Mills Road
Toronto, ON M3B 3P9
800-667-7733
www.scican.com

Atomic bedpan washer-disinfec-
tors, in single door and pass-through designs. HMTS Plasma Sterilizers, including the new 142 litre model.

SciCan
800-667-7733
www.scican.com
Toronto, ON M3B 3P9
1440 Don Mills Road

2% Chlorhexidin Gluconate Cloths.
Oral Care, Comfort Shield® Barrier Cloths and Sage® Washcloths, Prevalon® Heel Protector, Toothette®

A necessary and vital tool in the fight against nosocomial infection.

Offering simple interventions that help improve clinical outcomes. Products include Comfort Bath® Cleansing Washcloths, Prevalex® Heel Protector, Toothette® Oral Care, Comfort Shield® Barrier Cloths and Sage® 2% Chlorhexidin Gluconate Cloths.

Southmedic
Steris Canada, Inc.
Wave Good-Bye to Germs!

TITAN² represents the next generation in touchless roll towel dispensing. Electronic motion activated TITAN² helps prevent the spread of germs by eliminating cross contamination and improving hand hygiene. Loaded with enhanced features, the TITAN² Electronic Dispenser features four length portion controls, two operational settings (Wave & Dry or Tear & Dry), and is designed for use with Embassy® Supreme TAD or White Swan® towels. It’s easy to use! Get the TITAN² Electronic towel dispenser system so you can wave good-bye to germs and say hello to cost savings!
Pearl Orenstein
Infection Control Coordinator, SMBD
Jewish General Hospital, Montreal

“Like many infection preventionists who started out in the early days of infection prevention and control, Pearl Orenstein got into the profession by chance.

She was back in university after working as a nurse for a while, and she met an ICP from Sir Mortimer B. Davis Jewish General Hospital who asked Orenstein if she would be interested in replacing the ICP, since she was moving into quality assurance. “I thought infection prevention and control would be interesting,” Orenstein says. She took the job for four days per week, and once her kids were in school full-time, she worked in Infection Control four days per week, and quality assurance one day per week.

After her previous work in emergency, ICU, and public health, she found working in infection prevention and control was just as fast, but combined the knowledge and skills she used in her previous positions. “You need a good knowledge base, but the best part is you learn something new every day. There’s always someone with a question that stymies you, and you have to find the answers. It’s fun.”

Orenstein stresses that infection prevention is a team effort all the way. “I certainly don’t do this on my own; we do this as a team, and work very hard.” In fact, the addition of staff to enter data and analyze statistics is one of the most important developments in the profession. “Clerical help is of the utmost importance. There’s a much more formal way of looking at things. We also have to be careful so we don’t become bean counters. If we don’t use our data in some way – only collect it – then I don’t think we’ve come very far.”

There have been many changes in the profession over the years, one of them being the recognition that hospital-acquired infections are a major problem which should not be tolerated, says Orenstein.

Involvement with groups such as CHICA play an important role in an IP’s life, says Orenstein. “It’s a wonderful opportunity because you get to see how people are doing things across the country. You get to understand the evolution of the profession.”

Certification is also part of the equation. “Certification is important. There’s no guarantee everyone is qualified, but at least it is a good start to make sure everyone has a baseline.”

“You need a good knowledge base, but the best part is you learn something new every day. There’s always someone with a question that stymies you, and you have to find the answers. It’s fun.”

Above all, infection preventionists need to be humble. “You carry many hats, and sometimes have to be a go-between to represent the issues to everyone. It’s OK to say ‘I don’t know, but I’ll find out.’”

Last May, Orenstein was awarded the Alice-Girard Prize by the Order of Nurses of Quebec. The award recognizes the outstanding work of a nurse who has demonstrated remarkable professional commitment, leadership, and creativity, and has contributed significantly to the improvement of public health and the development of the profession. When asked about the award, she takes her own advice to heart: “It was a total surprise. I think it was my team’s way of having me recognized because I had a milestone birthday.”
Smarter Cleaning.

RUBBERMAID PULSE™
FLOOR CLEANING SYSTEM
- High-capacity reservoir holds enough solution to clean up to 850 sq ft of floor space
- Refill and clean up to 10,000 sq ft with the optional Rubbermaid Pulse™ Caddy
- Pulse™ Caddy utilizes Clean-Connect technology to reduce exposure to chemicals

Press the ergonomic trigger handle to deliver three streams of cleaning solution (non-atomizing for greener cleaning).

Clean floors faster and more easily: Rubbermaid Pulse™ combines industry-best microfibre and the time-saving portability of an on-board cleaning reservoir.

Learn more about Rubbermaid Pulse™ at www.rcpworksmarter.com or call 1-800-998-7004

Work Smarter.
Control Cross-Contamination and Nosocomial Infections Effectively, Efficiently and Economically

Microfibre Technology
Including the Ergonomic benefits of the Microfibre Wet and Dry Mopping Systems and the Microfibre Wiping System

Green Cleaning Program
Including the new Vert-2-Go line of Green Seal Certified cleaning products

Ultra Wipes
RTU Disinfectant Wipers for "non critical" hard surfaces

Purell® Hand Sanitizing System including the Portal Program

TASKI Equipment
State-of-the-Art Cleaning

for more information
visit us at www.woodwyant.com
or call 1-800-361-7691
The Registered Nurses’ Foundation of Ontario Molson Canada SARS Memorial Fund providing grants to ICPs

The SARS Memorial Fund for Infection Control Practitioners is a tuition/certification/professional development reimbursement program funded by Molson Canada SARS Concert (2003) and supported by the Ontario Ministry of Health and Long Term Care.

RNFOO manages the SARS Memorial Fund, initiated in January 2005. The fund provides grants to Infection Control Practitioners from any discipline to support them in advancing their knowledge to lead infection control practices within their healthcare settings. Grants can be applied to continuing education, certification/re-certification and professional development.

The fund of $175,000 is to be administered over three years, allowing for the allocation of approximately $58,000 per year in support of individual pursuing formal education and certification in the area of infection control. See www.rnfoo.org for details.
Virox Technologies Partnership Scholarship Winners

Through the financial support of the Virox Technologies Partnership, 14 CHICA-Canada members were awarded scholarships to attend the 2009 National Education Conference in St. John’s, NL. CHICA-Canada and its members thank Virox Technologies and their partners Deb Canada, JohnsonDiversey, Steris Corporation, and Webber Training for their initiative to make the education conference accessible to those whose accomplishments should be recognized and who may not have otherwise been able to attend.

Nancy Brown, Wingham, ON
Gail Busto, Vancouver, BC
Melody Cordoviz, Edmonton, AB
Brenda Dyck, Winnipeg, MB
Zahir Hirji, Toronto, ON
Mary LeBlanc, Tyne Valley, PE
Gail Lohr, Victoria, BC

Nila MacFarlane, Winnipeg, MB
Beverly Pittman, St. Antony, NL
Suzanne Rhodenizer-Rose, Bridgewater, NS
Helen Shaw, Sarnia, ON
Sheila Sheppard, Kentville, NS
Betty Taylor, Winnipeg, MB
Elizabeth Watson, Bridgewater, NS

CHICA-Canada Research Grant Awarded

At the 2008 Annual General Meeting held in Montreal, members ratified a resolution to establish a CHICA-Canada Research Grant dedicated to increasing our knowledge of the prevention, control and eradication of Clostridium difficile. The resolution then calls on federal, provincial and territorial governments of Canada to allocate $1 per Canadian toward a research fund aimed at the prevention, control and eradication of Clostridium difficile.

A grant in the amount of $42,500 has been awarded to Vivian Loo, MD, MSc, FRCP(C), McGill University Health Centre, Montreal for her research into “Household Transmission of Clostridium difficile.” The proposed research addresses household transmission of C. difficile and is anticipated to generate interesting data and help define and provide insights into the emerging problem of community-associated C. difficile infection.
We offer a wide range of market leading infection prevention products to help reduce the potential for infection throughout your surgical and patient care areas.

Cardinal Health Canada infection prevention solutions include:

- ChloraPrep® patient preoperative skin preparation
- Converters®
- Protective apparel
- Medical gloves
- Surgical clippers
- Fluid management
- Hand and skin care products
- Hard surface disinfectants
- Patient hygiene products

Help in the chase for zero hospital-acquired infections. What is the zero you want to chase?

Join the chase at cardinalhealth.ca and visit us at the 2009 CHICA Education Conference.

The premier provider of products, services, and solutions for safer, more efficient healthcare in Canada.
The Source for:

Preoperative CHG Shower Products

CHG Surgical Skin Prep Products

CHG Vascular Access Skin Prep Products

Call your Infection Prevention Specialist at 1 800-364-3577
Call for applications
2011 SCIENTIFIC PROGRAM COMMITTEE

Background
The CHICA-Canada 2011 Scientific Program Committee is a national committee whose mandate is to plan, develop and ensure completion of the scientific program committee for the 2011 National Education Conference. The 2011 National Education Conference will take place in Toronto (venue and date to be announced).

The 2011 committee is comprised of the following representatives of various practice settings:
2011 Conference Chair – Cathy Munford, RN, CIC
2011 Scientific Program Chair – Zahir Hirji, RN, BScN, MHSc, CIC
2011 Scientific Program Co-Chair – Vacant
2011/2012 Acute Care Representative – Vacant
2011/2012 Long Term Care Representative – Vacant
2010/2011 Community/Public Health Representative – Amanda Knapp, BASc, CPHI(C), CIC
2010/2011 Medical Microbiology/Infectious Disease Physician – Pamela Kibsey, MD, FRCPC

Call for applications
CHICA-Canada is seeking three candidates to fill the positions of:
• Scientific Program Co-Chair (will become Scientific Program Chair for 2012 conference)
• Acute Care Representative (for 2011 and 2012 conferences)
• Long Term Care Representative (for 2011 and 2012 conferences)

Meeting schedule and expenses
The Scientific Program Committee meets twice in-person (for each conference) and then communicates through email or conference calls. The first meeting of the 2011 Scientific Program Committee is scheduled for the autumn of 2009 (Toronto location to be announced). The first meeting of the 2012 Scientific Program Committee will be scheduled for the fall of 2010 (location TBA).
CHICA-Canada pays the expenses of committee members to attend in-person meetings. CHICA-Canada pays the expenses of committee members to attend the conferences they have planned.

Qualifications
Applicants must possess the following qualifications and agree to the following terms:
• A current (2009) member of CHICA-Canada, having held membership for at least five years.
• Must have a Certification in Infection Control & Epidemiology (CIC) or specialty training in epidemiology, infectious diseases or community medicine.
• A minimum of five years’ experience in Infection Prevention and Control and/or Infectious Diseases with specific expertise in the setting for which a representative is sought
• Good interpersonal and communication skills
• Professional involvement with CHICA-Canada in a Board or Chapter Executive role, as Chair of an Interest Group or on a CHICA-Canada Committee.
• Experience in the planning of scientific programs for professional conferences (local, regional or national) would be an asset but is not mandatory.
• Has the time, personal commitment and support of their institution to serve CHICA-Canada through this position.

Application must include:
• A letter from applicant indicating the position of interest, and demonstrating suitability for the position.
• A curriculum vitae that includes details as to the candidate’s background in Infection Prevention and Control/Infectious Diseases.
• a CHICA-Canada Board Member, as a Chapter Executive, or on a CHICA-Canada Standing Committee, Interest Group or Conference Planning Committee.

Applications must be received no later than June 1, 2009
Applications should be forwarded to:
Executive Administrator/Conference Planner
CHICA-Canada
PO Box 46125 RPO Westdale
Winnipeg, MB R3R 3S3
By courier to:
67 Bergman Crescent
Winnipeg, MB R3R 1Y9
By fax: 204-895-9595
By email: chicacanada@mts.net
A new DVD resource created by Regional Infection Control Networks in Ontario, this teaching tool focuses on the essentials of personal protective equipment. Although targeted to the long-term care setting, the messages are equally engaging for acute care as well. The DVD employs a humorous approach that makes it a great teaching tool for new and existing staff alike. English and French versions included.

See the CHICA-Canada Product Order Form (page 88) and www.chica.org for pricing information

The Grand Prix of PPE in Long Term Care

Some reviews:
• “Incredibly entertaining, and just happens to be informative as well… you’ll never consider donning and doffing again without a smile on your face.”
• “I did an in-service this week using the new PPE LTC video – staff thought it was great – there was laughter during the videos and a good Q and A session afterwards.”
• “After [the video] was previewed, there was an audible buzz of excitement in the room (with about 185 people present). They laughed at the funny parts and nodded heads at the messaging and were mesmerized for the duration of the show.”

2010 Board positions available for nomination

The Board of Directors of CHICA-Canada is seeking nominations for board positions that will be open in 2009. Being on the board of CHICA-Canada is an excellent way to participate at the national level. Personally and professionally, it offers the opportunity to meet a wide range of CHICA-Canada members, network with allied professional groups, and work with other motivated and experienced board members.

Nominations are invited for the following positions:
President Elect (1-year term)
Director, Programs & Projects (3-year term)
Director, Standards & Guidelines (3-year term)

These terms commence January 1, 2010. Position descriptions and nomination forms are found in the CHICA-Canada Policy and Procedure Manual, or may be obtained from the Membership Service Office or downloaded from www.chica.org (Members Login).

Signatures of two active members are required for each nomination. If you know someone who would be qualified and interested in one of the above positions, send a completed nomination form to:

Bern Hankinson, RN, BN, CIC
CHICA-Canada Secretary/Membership Director
c/o Membership Service office
PO Box 46125 RPO Westdale
Winnipeg MB R3R 3S3

Or by courier to:
Bern Hankinson, RN, BN, CIC
CHICA-Canada Secretary/Membership Director
c/o Membership Service office
67 Bergman Crescent
Winnipeg MB R3R 1Y9

NEW!

The Improved

Flexi-Seal®
FMS

Dramatically Advancing Fecal Incontinence Management

Concerned about C. difficile?

Use Flexi-Seal® FMS to manage and contain infectious diarrhea

- A simple closed system
- All disposable, single patient use
- Designed to minimize the exposure of infectious waste materials

For more information, call our Customer Relations Center (Registered Nurses on staff) at 1 800 465-6302, Monday through Friday, 8:00 AM to 7:00 PM (EST), or visit our Web site at www.convatec.ca

Flexi-Seal is a registered trademark of ConvaTec Inc.
Realize the possibilities is a trademark of ConvaTec Inc.
©2008 ConvaTec Inc.
the VANISHPOINT® ADVANTAGE
Designed for Clinician and Patient Safety

Clear, unobstructed calibrations allow for accurate dosing
Triple beveled, lubricated needle provides patient comfort

EASY, ONE-HANDED ACTIVATION
Pre-removal activation prevents exposure to contaminated sharp

NO CONTAMINATED SHARP EXPOSED
Attached needle prevents leakage and contamination

Studies show that most needlestick injuries occur within seconds after needles are removed from patients.

REduced Syringe deadspace
Activated VanishPoint® Syringes require less disposal space than other syringes and prevent disposal-related injuries.

VanishPoint® syringes are available in a variety of needle sizes and gauges.

VanishPoint® tube holders are used with standard blood collection needles and vacuum tubes for safe blood collection.
All acute healthcare facilities (e.g. hospitals) should be able to promote and support an environment that is safe for patients, visitors and healthcare workers. Planning of healthcare facilities, room designs, surfaces and processes should take into account the chain of transmission of infectious agents, so users can easily take steps to avoid spreading potentially harmful microorganisms. There are Canadian Standards to address Infection Control for Construction and Renovation, Routine Practices and Additional Precautions, Sterilization and specific disease entities. Currently, there are no Canadian Infection Control Standards to address the overall design of healthcare facilities. Infection Prevention and Control concepts need to be incorporated into design, to facilitate desired practices by the healthcare worker and to provide a safe environment.

1. Infection Prevention and Control Professionals should be involved in all phases of healthcare facility design, construction and renovation. This includes but is not limited to:
 • participation in proposal for funding
 • design planning
 • review of tender documents and mockups
 • final commissioning.

2. Infection Prevention and Control Professionals should be involved to ensure that design and construction of specific structures facilitates desired Infection Prevention and Control practices, and meets or exceeds current guidelines including American Institute of Architects (AIA), Canadian Standards Association (CSA), Public Health Agency of Canada, and ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers).

3. Infection Prevention and Control Professionals should review preventive measures and construction specification sections to ensure that adequate language and requirements are included in the tender documents prior to document issuance.

4. In-Patient Bedrooms:
 Single patient rooms have been shown to help decrease the risk of infection by reducing cross contamination.1,2,3,4 Having a single room also provides access to a dedicated toilet for each patient. This will improve the management of human waste and decrease the risk of transmission of organisms such as Clostridium difficile. In addition, evidence shows single patient rooms are cost effective and safer; (see appendix attached).
 • In new construction, the maximum number of beds per in-patient room should be one unless the functional program can demonstrate the necessity of a two-bed arrangement. 5 Approval of anything other than single rooms should be obtained from the licensing authority.
 • Where renovation work is undertaken, the current bed capacity should not be exceeded and, an assessment should be done to determine whether there is an opportunity to decrease multi-bedrooms to the lowest achievable number of beds per room. e.g. decrease a 4-bed room to 2-bed room whenever feasible.
5. Designs should include:
• A washroom that includes a toilet and hand washing sink in each in-patient single-bed room.4,5
• Dedicated HCW hand wash sinks in each patient room exclusive of the patient washroom sink.4,5
• Minimum of one Airborne Infection Isolation room in each in-patient care unit and additional Airborne Infection Isolation rooms as per Institutional Infection Control Risk Assessment.5
• Management of patient bodily waste in such a manner as not to pose a risk to staff or patients. The use of rim-flushing sinks or hoppers should be eliminated. Spray wands should not be used.
• Separation of clean and dirty utility rooms and provisions for storage of equipment and supplies in a clean and dry area.5
• Triage areas and new clinical spaces that are designed and ventilated to reduce potential exposure of staff, patients, and visitors/families to infectious diseases.5

Space allocation and distances between patients in all areas of the Healthcare Facility should meet AIA and CSA standards as a minimum.

6. Before installing hand washing sinks and hand hygiene product (e.g. ABHR) dispensers, prepare a workflow pattern and risk assessment to facilitate the decision about where to place sinks and products.6

7.1. Sink Standards: Placement
For example of indications for placement of handwashing sinks see: http://www.health.gov.on.ca/english/providers/program/infectious/diseases/ic_hh.html
• There should be sufficient hand washing sinks such that staff do not need to walk more than 6.1 metres/20 feet to reach the sink.6
• Sinks should be located at least one metre (three feet) from patients, clean supplies and adjacent counters.6
• Handwash sinks should be free standing and not inserted into or immediately adjacent to a counter.6
• Sinks should be installed at least 34 inches (863.6 mm) above the floor.6

7.2 Sink Standards: Design
• All materials used to construct handwash sinks should be capable of sustaining regular cleaning/disinfection with hospital-approved cleaners and disinfectants.7
• Sinks should be porcelain, enamel, vitreous china or 18 gauge, 304 stainless steel 8, or Corian or other non-porous materials. Granite or marble is not appropriate for healthcare settings.
• Sink size should be sufficient to prevent recontamination (from splashing) during use for hand hygiene. Suggested minimum inside diameter of 14” x 10” and a minimum depth of 9”. Cup or bar sinks are not of sufficient size for hand washing.
• Sink and spout should be designed to minimize splashing and aerosolization.
• Sink spouts should be free of aerators/modulators/rose sprays.
• Finishings around plumbing fixtures
should be smooth and water resistant.

- Plug or overflows capable of taking a sink plug should not be used.5,9
- Strainers and anti-splash fittings at outlets should not be used as they easily become contaminated with bacteria.4
- Taps and controllers:
 - Controls (water taps) should be hands free. Either electric eye or foot pedal operation is acceptable (these should be triggered by hand, not body placement).6
 - Taps such as gooseneck taps should not swivel.6
 - Ultrasonic controls or automatic temperature controls should not be used.4
 - Electric eye technology should have a backup that allows for operation during power interruptions, and have a means for users to adjust water temperature adjacent to the sink.6
- Towel dispenser design should be such that only the towel is touched during removal of towel for use.6
- Hot air dryers should not be used in clinical areas as warm air currents dry hands slowly and can be used by only one individual at a time. This results in queues and the temptation to dry hands on clothing.6

References

Appendix: Rationale for single patient rooms in healthcare facilities:

Facilities are continually challenged in having to close rooms and/or units due to patient exposure to infections. Many outbreaks start from roommate exposures or exposures in shared bathroom facilities. Patient placement and waiting times in emergency rooms are significantly hampered as a result of lack of appropriate rooms to place patients.

If all patient rooms were single, there would be improved patient flow, improved occupancy rates, decreased risk of exposure to infections, and improved safety for patients and health care providers. The improved flexibility would also increase the life span of the building.

A 2004 review by Ulrich and Xiao found rigorous studies that link the physical environment to patient and staff outcomes. 1 This review found 120 studies linking infection to the built environment of the hospital. They identified at least 16 studies relevant to the question of whether nosocomial infection rates differ between single-bed and multi-bed rooms. They concluded that infection rates are lower when patients are in single-bed rather than multi-bed rooms. Placing patients in single-bed rooms decreases the risk of exposure to infections from other patients. In part, this occurs because environmental surfaces near the patient become contaminated with organisms which can then be transmitted to other
patients. Boyce (1997) et al. found that in the rooms of patients infected with MRSA, 27% of all environmental surfaces sampled were contaminated with MRSA. Multi-bed rooms are more difficult to decontaminate thoroughly after a patient is discharged than a single-bed room.

Ulrich et al. indicate that based on a large and varied body of research, there can be no question that single-bed rooms have several major advantages over multi-bed rooms. These advantages include reductions in nosocomial infection rates. The review recommends that single-bed rooms should be provided in almost all situations. It suggests that adaptable-acuity single-bed rooms with decentralized nursing stations should be adopted as they reduce nosocomial infection rates, reduce room transfers and associated medical errors, greatly lessen noise, improve patient confidentiality and privacy, facilitate social support by families, improve staff communication to patients, and increase patients’ overall satisfaction with healthcare.

Further support for single rooms can be found in the report from a study commissioned by the American Institute of Architects to answer three questions regarding single rooms:

1. What are the differences in costs and efficiency of management and care delivery in single and double occupancy patient rooms in acute care settings?
2. What are the advantages and disadvantages in disease control and falls prevention in single versus double occupancy rooms in acute care settings?
3. What are the therapeutic impacts of socio-behavioral issues on patient privacy, social interaction and daily functioning of single versus double occupancy hospital rooms?

Their findings included:
1. Operating costs are reduced in single patient rooms compared with multi-occupancy rooms due to reduction in transfer cost, higher bed occupancy rates and reduction in labour costs. This cost reduction can be better achieved when conversion to single room is paired with other healing environment design principles.
2. Cost-savings because of reduction in transfers is particularly applicable with acuity-adaptable rooms.
3. Patient length of stay is associated with hospital costs. Patient length of stay in a single room is shorter (in part due to reductions in nosocomial infections), which reduces the cost per patient.
4. In comparison to multi-occupancy rooms, medication errors are reduced in single rooms, resulting in reduced costs. It was also noted that there is research on the negative impacts resulting from additional precautions/isolation which is often a result of acquiring a hospital infection. Isolated patients were twice as likely as non-isolated patients to experience an adverse event during hospital stay.

Based on these data, the American Institute of Architects, and the United Kingdom National Health Service have recommended that new hospital construction should be comprised exclusively of single rooms.

Clean up with Accreditation Canada

We have new service excellence standards for Reprocessing and Sterilization of Reusable Medical Devices developed in partnership with the Canadian Standards Association.

Drop by our booth at the CHICA Conference to find out about:

- **Our Qmentum accreditation program** and how it contributes to
 - High performance sterilization and reprocessing services and practices
 - Safer reprocessing equipment
 - Quality improvement and achieving positive results

- **Updates** to Emergency Department, Operating Room, and Infection Prevention and Control standards

- **The Distinction Award**, coming soon for organizations seeking highly specific standards for quality sterilization and reprocessing services

ACCREDITATION CANADA

AGRÉMENT CANADA

www.accreditation.ca

1-800-814-7769
Because you’re committed to providing quality care

Choose PURELL® 70 Instant Hand Sanitizer for effective germ kill.

New 70% Ethyl Alcohol, fragrance free formulation
From a brand you can trust.

Antiseptic Cleanser. Kills harmful bacteria or germs. Use as part of the daily cleansing routine. Place enough product in your palm to thoroughly cover your hands. Rub hands together briskly until dry.

CAUTIONS: Flammable. Keep away from fire or other heat sources. This product is intended for external use only. When using this product do not use in or near the eyes. In case of contact, rinse eyes thoroughly with water. Discontinue use and consult a doctor if irritation or redness develops. Keep out of reach of children. If swallowed, get medical help or contact a Poison Control Center right away.

GOJO, inventors of PURELL® Instant Hand Sanitizer, is committed to providing well being solutions for hygiene and healthy skin.

©2008. GOJO Industries, Inc. All rights reserved. PURELL is a trademark of Johnson & Johnson and is used under license.
When Absolutely Clean is Absolutely Necessary

AT-OS washer-disinfectors automatically empty, clean, and disinfect bedpans and urinals.

- 11 jets direct water to all surfaces to be cleaned
- Pressure booster pump provides high power cleaning and minimizes water consumption
- Thermal disinfection with steam generated by the integrated boiler
- Self-disinfection cycle to prevent microbiological growth in pipeworks, pumps, valves, etc.
- Variety of models suitable for installation in soiled utility room or patient bathrooms

For further information, call 1.800.667.7733 or send an email to medicalsales@scican.com.

www.scican.com

AT-OS Bedpan Washer

SciCan A HIGHER STANDARD
Later this year, it will be my privilege to travel to Newfoundland for the annual conference of the Community and Hospital Infection Control Association of Canada, as the guest of a very generous Canadian company. I am struck, having read about the situation in Canada, by how many of our challenges are similar, and yet how the small differences have such a large impact.

I work in Lima, Peru, at the Dos de Mayo Hospital, a 600-bed acute care facility. In my hospital there are three healthcare workers in charge of infection control – two nurses and one midwife. They are considered the infection control team, although all three are called for duties elsewhere in the hospital. This is a critical limitation to our infection control program – inadequacy of human resources (we need one medical specialist in infectious diseases for every 300 beds, however, my hospital does not have a single doctor dedicated exclusively to infection control).
Those healthcare workers in charge of infection control work only in surveillance. They do not have the opportunity to undertake prevention, intervention, or much control. Surveillance of nosocomial infections includes:

1. Selective surveillance in critical areas such as intensive care, neonatal, and maternity wards.

 This type of surveillance is intended to detect ventilator-associated pneumonia, urinary tract infection, and intravascular device-related sepsis.

2. General surveillance in medicine, surgery, pediatric and gynecological wards. This type of surveillance detects pneumonia, wound infection, urinary tract infection, diarrhea, intravascular device-related sepsis, cellulitis, pyoderma, and conjunctivitis.

Infection control workers at Dos de Mayo Hospital do not receive an extra salary for their work. They are trained in infection control by the Peruvian Ministry of Health, and every year take two “updating” courses. Base qualifications for those working in infection control at Dos de Mayo Hospital are: knowledge of and experience with surveillance mechanisms for hospital infection control, experience with the management of outbreaks in hospitals, experience with the development of epidemiological surveys, and knowledge of statistical programs for data management.

Another important limitation to our infection control effort is that we chronically lack sufficient material for preventing nosocomial infections: alcohol hand rub, liquid soap, gloves, masks, N95 particulate respirators, paper towel, gowns, safety glasses, and other such basic items.

There is undoubtedly much that we can learn from Canadians and I am thankful to Gojo Industries Inc. for giving me the opportunity to do just that. Perhaps there will be an opportunity to one day to welcome Canadian infection control workers to Peru. olocation
HOW TO SUBMIT AN ARTICLE TO THE JOURNAL

The Canadian Journal of Infection Control publishes member-supplied articles as feature technical article or as “News from the Field”. All material submitted is reviewed by an editorial board consisting of CHICA-Canada members. If you are not sure about your writing skills, get your ideas down and ask a colleague or member of the editorial board for help. Full requirements for technical articles can be found at http://www.chica.org/inside_cjic_journal.html, but here are some tips for getting started:

1) The author of the content must be clearly identified by name, title and organization and both a telephone number and email address must be supplied for contact purposes.

2) The subject of the material must be relevant to the interests of infection control practitioners.

3) The material should be submitted electronically via email as a Word document.

4) Length of submitted material is to be limited to a maximum of 1,500 words.

5) No part of the submitted material is to include what can be construed as sales-oriented promotion of specific individuals, companies, products or services.

6) Any photographic images to be included with the material must be free and clear of any copyright and must be submitted electronically as JPGs or TIFFs that are high resolution (at least 300 dpi) and a minimum of 6” x 9” in size. Image files should be sent separately, not embedded in the Word document.

7) In the event that the material is accepted for publication in CJIC, the author agrees that the first publication rights for the material belong to CJIC magazine and that any subsequent publishing of the material can only be done after the author or publisher is granted reprint approval in writing from CHICA-Canada and CJIC magazine.

BE AN AUTHOR FOR THE JOURNAL

If you wish to contribute articles on research or general interest please contact the Clinical Editor:

PAT PIASKOWSKI
807-683-1747
piaskowp@tbh.net
Plus SUTURES—All that you’ve come to trust.
Today, more than ever, there’s emphasis on reducing the risk of bacterial contamination during every surgical procedure. Now, offer your patients Plus SUTURES with antibacterial technology from ETHICON.

The next generation is now. Protect it with Plus SUTURES.

Surgical sutures since 1887
CHICA-Canada Infection Control Audit Toolkit

Available from CHICA-Canada through the CHICA-Canada Programs and Projects Committee, this series of infection control audit templates will assist you in your practice of infection prevention and control in a variety of health care settings. Topics include:

- Dental Audit
- Endoscopy Audit
- Haemodialysis Unit Audit
- High Level Disinfection - Outside SPD Audit
- Infection Prevention and Control Risk Assessment Guide
- Hospital-wide Infection Control and Prevention Audit and Template
- Ophthalmology O.R. Cluster Investigation and Procedure Assessment
- O.R. Audit
- Patient/Resident Service Units Audit
- Renal Unit Infection Control Audit
- Respiratory Outbreaks in Long Term Care Facilities Audit

Enhanced Teleclass Recordings on CD

Available exclusively from CHICA-Canada in partnership with Webber Training Inc. Topics include:

Disinfecting Patient Care Equipment; Exploring CDC Hand Hygiene Guidelines; Airborne Spread of Human Pathogens; Disinfectants in Infection Control; Hands and the Spread of Human Pathogens; Current Best Practices in Hand Hygiene; Hand Sanitizers and their Effect on Viruses; Innovations in Hand Hygiene; Influenza Pandemic on the Doorstep; Controlling MRSA and VRE; Scientific Solutions to the Norovirus Problem; Strategies for Norovirus Infection Control on Cruise Ships; Relative Impact of Hand Hygiene on Healthcare-Associated Infections; Evidence Behind Control Measures for MRSA and VRE; Environmental Infection Control in Healthcare Facilities; Hand Hygiene – Different Approaches; Antiseptic Practice and Procedure; Glutaraldehyde Toxicology and Management of Risk; New WHO Hand Hygiene Guidelines; Respiratory and GI Outbreaks in LTC; Biofilms in our Environment; Infection Control in Day Care Facilities; Disease Transmission in the Home; Hand and Viral Infections; Infection Control in Long Term Care; Innovations in Hand Hygiene; Preventing MRSA and VRE; Advances in Global Infection Control; Bedside Hand Hygiene Products; C.difficile and Environmental Cleaning; Preventing Ventilator Associated Pneumonia – Applying the Science; C.difficile: Environmental Survival; The Toilet Bowl-Blues; Surface Disinfectants and Environmental Impact; The Spectre of a Flu Pandemic: Is it Inevitable?

ESBL TOOLKIT

Best Infection Control Practices for Patients with Extended Spectrum Beta Lactamase Enterobacteriaceae – An infection control toolkit developed by the International Infection Control Council (APIC, CHICA-Canada, ICNA (UK, Ireland)).

"Just Wash 'Em “Lavez les”

A 7 minute video directed to Elementary School aged children. Reaching today’s kids with our all-important handwashing message is a major step in preventing the spread of infection. CHICA-Canada’s very own Sudsy makes his debut in a creative, fun-to-watch handwashing video aimed at school-aged children. Great for school projects, seminars and demonstrations.

The Infection Control Toolkit:
Infection Control in Emergencies and Disasters
revised 2007 (formerly: Infection Control Toolkit: Strategies for Pandemics and Disasters)

The only disaster planning document that presents information specific to the key issues of infection control. Includes all the tools and materials necessary for surveillance, education, communication, laboratory, and management of personnel and patients are included. Handy forms, references, fact sheets, flowcharts, checklists, and samples provide the framework to interface with healthcare facilities and local public health preparedness plans. No other disaster planning document presents information specific to the key issues of infection control.

ARO VIDEO

A 15 minute educational video covering topics related to AROs (epidemiology, surveillance and control). Produced in cooperation with Wyeth, with assistance from CHICA-Canada members.

The Grand Prix of PPE in Long Term Care

A new DVD resource created by Regional Infection Control Networks in Ontario, this teaching tool focuses on the essentials of personal protective equipment. Although targeted to the long-term care setting, the messages are equally engaging for acute care as well. The DVD employs a humorous approach that makes it a great teaching tool for new and existing staff alike. English and French versions included.
<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>QUANTITY</th>
<th>MEMBER RATE</th>
<th>NON-MEMBER RATE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Just Wash ‘Em VHS Video© – no workbook</td>
<td></td>
<td>N/C - $10.00</td>
<td>$25.00</td>
<td></td>
</tr>
<tr>
<td>Just Wash ‘Em VHS Video© with workbook</td>
<td></td>
<td>N/C - $12.00</td>
<td>$30.00</td>
<td></td>
</tr>
<tr>
<td>Just Wash ‘Em DVD© – no workbook</td>
<td></td>
<td>N/C - $15.00</td>
<td>$30.00</td>
<td></td>
</tr>
<tr>
<td>Just Wash ‘Em DVD© With workbook</td>
<td></td>
<td>N/C - $17.00</td>
<td>$35.00</td>
<td></td>
</tr>
<tr>
<td>10% Discount on 3 or more!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavez les! VHS Video© – no workbook</td>
<td></td>
<td>N/C - $10.00</td>
<td>$25.00</td>
<td></td>
</tr>
<tr>
<td>Lavez les! VHS Video© with workbook</td>
<td></td>
<td>N/C - $12.00</td>
<td>$30.00</td>
<td></td>
</tr>
<tr>
<td>Lavez les! DVD© – no workbook</td>
<td></td>
<td>N/C - $15.00</td>
<td>$30.00</td>
<td></td>
</tr>
<tr>
<td>Lavez les! DVD© with workbook</td>
<td></td>
<td>N/C - $17.00</td>
<td>$35.00</td>
<td></td>
</tr>
<tr>
<td>10% Discount on 3 or more!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARO Video© – Across the Spectrum of Care</td>
<td></td>
<td>N/C - $10.00</td>
<td>$15.00</td>
<td></td>
</tr>
<tr>
<td>Le MRA© – Dans tout le spectre des soins</td>
<td></td>
<td>N/C - $10.00</td>
<td>$15.00</td>
<td></td>
</tr>
<tr>
<td>Infection Control Audit Toolkit</td>
<td></td>
<td>N/C - $50.00</td>
<td>$100.00</td>
<td></td>
</tr>
<tr>
<td>Infection Control in Emergencies and Disasters Toolkit</td>
<td></td>
<td>$100.00</td>
<td>$120.00</td>
<td></td>
</tr>
<tr>
<td>ESBL Toolkit</td>
<td></td>
<td>$100.00</td>
<td>$120.00</td>
<td></td>
</tr>
<tr>
<td>Grand Prix PPE DVD</td>
<td></td>
<td>$24.00</td>
<td>$24.00</td>
<td></td>
</tr>
<tr>
<td>Webber Training Teleclass CD (attach list of recordings to be ordered)</td>
<td></td>
<td>55.00 – no shipping & handling fee</td>
<td>55.00 – no shipping & handling fee</td>
<td></td>
</tr>
<tr>
<td>+Shipping and Handling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orders less than $50 - $8.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orders $51-$100 - $10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orders $101-$150 - $12.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orders over $151 – 15%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No shipping and handling on Webber Teleclass CDs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For courier shipments, add $25.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUB-TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping & handling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GST/HST*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*GST/HST – GST 5% of total amount, including shipping & handling; HST 13% of total amount including shipping & handling (payable by residents of New Brunswick, Newfoundland, Nova Scotia). No GST/HST applicable on orders from outside Canada. BN 11883 3201 RT0001.

Send order to: CHICA Canada, PO Box 46125 RPO Westdale, Winnipeg, MB R3R 3S3 • Email: chicacanada@mts.net • Fax: 1-204-895-9595

☐ I am paying by cheque, payable to CHICA-Canada – enclosed
☐ I am paying by credit card – VISA/MasterCard/AMEX

Credit Card Number ___ Expiry Date _____________________

Name of Cardholder (print) ___

Signature of Cardholder ___

SHIP TO:

Name __

Address ___

__

Telephone __

+Shipping and Handling
Orders less than $50 - $8.00
Orders $51-$100 - $10.00
Orders $101-$150 - $12.00
Orders over $151 – 15%
No shipping and handling on Webber Teleclass CDs
For courier shipments, add $25.00
A New Star is Born.

MICROSAN Encore

The next generation of foaming Alcohol handrub

Deb Canada has developed and dermatologist tested a superior non-aerosol Foaming Alcohol Hand Rub. The new Microsan® Encore has a much better skin compatibility and excellent moisturizing properties with added conditioners and emollients, and specially formulated foaming agent for superior foam quality that is also latex and nitrile safe.

The new Microsan Encore is gentler to skin, more effectively kills bacteria and makes hands feel fresh and clean. The higher alcohol volume in the new Microsan Encore provides greater efficacy (84% of all research respondents preferred using Microsan Encore foam vs. alcohol gel products).

The new user friendly Microsan Encore Foaming Alcohol Hand Rub is available in a personal size 50 ml, and 400 ml bottles with foaming pumps, and in a one litre foaming cartridge.

Microsan Encore Foaming Alcohol Hand Rub gives you an exceptional after-feel, which promotes greater usage frequency, better hygiene, and improved compliance. Now that is something worth applauding.

Deb Canada For more information call 1-888-DEB-SOAP or visit www.debcanada.com
Clean your hands, for your patients for yourself

3M Brand Promise.

For healthcare providers who want a superior total hand hygiene solution, the 3M hand hygiene portfolio helps to improve and sustain hand hygiene compliance with versatile and comprehensive hand hygiene products and accessories. The comprehensive portfolio of solutions is designed to help improve skin health, hand hygiene expertise, and compliance by combining hand hygiene product options with delivery methods, accessories, education, and services.

It is often recognized that the hand hygiene product selection can greatly impact health care worker hand hygiene compliance. 3M is committed to offering its customers a comprehensive range of effective and preferred formulations.

- Alcohol Formulations
- Alcohol and Chlorhexidine Gluconate (CHG) Formulations
- Moisturizing Lotion
- Hypoallergenic soap

It is well known that the acceptance of the importance of hand hygiene does not always translate to high compliance rates. Recently, several Canadian initiatives have been designed to improve hand hygiene compliance in health care facilities.

- Point of Care Solutions
- 3M Hand Hygiene Compliance Program

3M™ Avagard™ D Instant Hand Antiseptic with Moisturizers
(NPN 02242852)
Waterless hand antiseptic with moisturizers that is CHG compatible, fragrance-free and latex glove compatible.
Contains ethyl alcohol 61% w/w (68.5% v/v)

3M™ Hand Antiseptic Gel Instant Hand Antiseptic with Emollients
(NPN 80007158)
a non-irritating, moisturizing antimicrobial handwash.
Contains 70% v/v ethyl alcohol

NEW! 3M™ Quick Foam
Non-Aerosol Foaming Hand Antiseptic with Moisturizers (NPN 80008794)
A non-aerosol, foam hand antiseptic (70% v/v ethyl alcohol) that kills harmful bacteria without soap or water and is moisturizing but not sticky.

3M and Tegaderm are trademarks of 3M. Used under license in Canada.
©3M 2009. All rights reserved. Please recycle. Printed in Canada. 0903-5145
<table>
<thead>
<tr>
<th>COMPANY</th>
<th>PAGE</th>
<th>PHONE</th>
<th>E-MAIL ADDRESS</th>
<th>WEB SITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M Canada Health Care</td>
<td>72,90</td>
<td>800-265-1840</td>
<td>Kgraham2@mmm.com</td>
<td>www.3M.ca</td>
</tr>
<tr>
<td>Accreditation Canada</td>
<td>80</td>
<td>613-738-3800</td>
<td>Gilles.lanteigne@accreditation-canada.ca</td>
<td>www.accreditation-canada.ca</td>
</tr>
<tr>
<td>Air Technology Solutions, Inc.</td>
<td>84</td>
<td>866-735-1480</td>
<td>R.Weber@airmation.ca</td>
<td>www.airmation.ca</td>
</tr>
<tr>
<td>AMG Medical Inc.</td>
<td>93</td>
<td>866-518-6099</td>
<td>mmedprodefense@amgmedical.com</td>
<td>www.amgmedical.com</td>
</tr>
<tr>
<td>Angus Medical, Inc.</td>
<td>1</td>
<td>866-418-1689</td>
<td>Eliot@angusmedical.com</td>
<td>www.angusmedical.com</td>
</tr>
<tr>
<td>Ansell Canada</td>
<td>35</td>
<td>800-363-8340</td>
<td>MPelletier@ansell.com</td>
<td>www.ansellhealthcare.com/canada</td>
</tr>
<tr>
<td>ArjoHuntleigh</td>
<td>33</td>
<td>800-665-4831</td>
<td>info@arjo.ca</td>
<td>www.ArjoHuntleigh.com</td>
</tr>
<tr>
<td>Association for Professionals in Infection Control & Epidemiology, Inc.</td>
<td>56</td>
<td>202-789-1890</td>
<td>apicinfo@apic.org</td>
<td>www.apic.org</td>
</tr>
<tr>
<td>B. Braun Medical Inc.</td>
<td>58</td>
<td>877-949-9529</td>
<td>Jonathan.Braido@bbraun.com</td>
<td>www.bppasive bbwunusa.com</td>
</tr>
<tr>
<td>Baxter Corporation</td>
<td>11</td>
<td>905-281-6505</td>
<td>Alanna.harrison@baxter.com</td>
<td>www.baxter.com</td>
</tr>
<tr>
<td>BD - Canada</td>
<td>17</td>
<td>800-268-5430</td>
<td>AnneMarie.Carli@bd.com</td>
<td>www.bd.com</td>
</tr>
<tr>
<td>BioScience Laboratories Inc.</td>
<td>21</td>
<td>406-587-5735</td>
<td>Verzuh@biosciencelabs.com</td>
<td>www.biosciencelabs.com</td>
</tr>
<tr>
<td>Bowman Manufacturing Company Inc.</td>
<td>60</td>
<td>360-435-5005</td>
<td>stephaniel@bowmanmispensers.com</td>
<td>www.bowmanmispensers.com</td>
</tr>
<tr>
<td>Canadian Standards Association</td>
<td>16</td>
<td>416-747-4040</td>
<td>Dionne.downer@csa.ca</td>
<td>www.csa.ca</td>
</tr>
<tr>
<td>Capital Health Authority</td>
<td>10</td>
<td>780-735-3435</td>
<td>Jennifer.Osinchuk@capitalhealth.ca</td>
<td>www.capitalhealth.ca</td>
</tr>
<tr>
<td>Cardinal Health Canada Inc.</td>
<td>71</td>
<td>905-502-3365</td>
<td>Carol.Bentley@cardinal.com</td>
<td>www.cardinalhealth.com</td>
</tr>
<tr>
<td>CAREstream Medical Ltd.</td>
<td>23</td>
<td>604-552-5486</td>
<td>dlee@carestream.com</td>
<td>www.carestream.com</td>
</tr>
<tr>
<td>Coloplast Canada Corporation</td>
<td>2</td>
<td>877-820-7008</td>
<td>camb@coloplast.com</td>
<td>www.coloplast.com</td>
</tr>
<tr>
<td>Convatec Canada</td>
<td>75</td>
<td>800-465-6302</td>
<td>Mary.Dimitratos@convatec.com</td>
<td>www.convatec.ca</td>
</tr>
<tr>
<td>Coviden Ltd.</td>
<td>55</td>
<td>877-664-8926</td>
<td>ioriann.campbell@coviden.com</td>
<td>www.covidien.com</td>
</tr>
<tr>
<td>DEB Canada</td>
<td>89</td>
<td>888-332-7267</td>
<td>debcanada@debcanada.com</td>
<td>www.debcanada.com</td>
</tr>
<tr>
<td>ECO-LAB Healthcare</td>
<td>94</td>
<td>800-352-5326</td>
<td>Angie.Jeske@ecolab.com</td>
<td>www.ecolab.com/healthcare</td>
</tr>
<tr>
<td>Ethicon</td>
<td>86</td>
<td>905-946-2065</td>
<td>jozan2@medica.jnj.com</td>
<td>www.jmp.ca</td>
</tr>
<tr>
<td>Glo Germ Company</td>
<td>8,9</td>
<td>800-842-6622</td>
<td>moabking@gmail.com</td>
<td>www.glogerm.com</td>
</tr>
<tr>
<td>GOJO Industries, Inc.</td>
<td>81</td>
<td>800-321-9647</td>
<td>customerservice@GOJO.com</td>
<td>www.healthcare.GOJO.com</td>
</tr>
<tr>
<td>Hollister Limited</td>
<td>37</td>
<td>800-263-7400</td>
<td>Shelly.Lent@Hollister.com</td>
<td>www.hollister.com</td>
</tr>
<tr>
<td>Johnson & Johnson Medical Products</td>
<td>38</td>
<td>800-268-5577</td>
<td>mdfolman@its.jnj.com</td>
<td>www.sterrad.com</td>
</tr>
<tr>
<td>Kruger Products Ltd.</td>
<td>65</td>
<td>800-665-5610</td>
<td>Jay.Candido@krugerproducts.ca</td>
<td>www.krugerproducts.ca/afh</td>
</tr>
<tr>
<td>Laura Line Skin Care Products</td>
<td>62</td>
<td>800-257-5592</td>
<td>maureen@lauralineskincare.com</td>
<td>www.luraielineskincare.com</td>
</tr>
<tr>
<td>McArthur Medical Sales Inc.</td>
<td>64</td>
<td>800-996-6674</td>
<td>refeller@mearthumomedical.com</td>
<td>www.mearthumomedical.com</td>
</tr>
<tr>
<td>Medco Equipment, Inc.</td>
<td>41</td>
<td>800-717-3626</td>
<td>medicequipment@msn.com</td>
<td>www.medicequipment.com</td>
</tr>
<tr>
<td>Medic Acces Inc.</td>
<td>25</td>
<td>450-602-1556</td>
<td>info@medicacces.com</td>
<td>www.medicacces.com</td>
</tr>
<tr>
<td>Medline Canada Corporation</td>
<td>7</td>
<td>800-396-6996</td>
<td>canadamedline@medline.com</td>
<td>www.medline.ca</td>
</tr>
<tr>
<td>PDI - Professional Disposables International</td>
<td>30</td>
<td>800-999-6423</td>
<td>Bnewman@pdipdi.com</td>
<td>www.pdpdi.com</td>
</tr>
<tr>
<td>Pinchin Environmental Ltd.</td>
<td>63</td>
<td>905-363-1295</td>
<td>lbarings@Pinchin.com</td>
<td>www.pinchin.com</td>
</tr>
<tr>
<td>Retractable Technologies, Inc.</td>
<td>76</td>
<td>888-703-1010</td>
<td>Risesales@vanishpoint.com</td>
<td>www.vanishpoint.com</td>
</tr>
<tr>
<td>Rubbermaid Canada</td>
<td>67</td>
<td>800-998-7004</td>
<td>tim.spence@rubbermaid.com</td>
<td>www.rubbermaid.com</td>
</tr>
<tr>
<td>Sage Products Inc.</td>
<td>5</td>
<td>800-323-2220</td>
<td>customservice@sageproducts.com</td>
<td>www.sageproducts.com/canada</td>
</tr>
<tr>
<td>SciCan Ltd.</td>
<td>82</td>
<td>724-820-1600</td>
<td>Inoriss@scican.com</td>
<td>www.scican.com</td>
</tr>
<tr>
<td>Steris Canada Inc.</td>
<td>27</td>
<td>800-661-3937</td>
<td>ian_pequegnat@steris.com</td>
<td>www.steris.com</td>
</tr>
<tr>
<td>The Stevens Company Limited</td>
<td>34</td>
<td>800-268-0184</td>
<td>stevens@stevens.ca</td>
<td>www.stevens.ca</td>
</tr>
<tr>
<td>Uberloo International Inc.</td>
<td>92</td>
<td>902-628-8566</td>
<td>Ray.brow@uberloo.com</td>
<td>www.uberloo.com</td>
</tr>
<tr>
<td>Vernacare Canada Inc.</td>
<td>92</td>
<td>800-268-2422</td>
<td>glenn.duncan@vernacare.com</td>
<td>www.vernacare.com</td>
</tr>
<tr>
<td>Virox Technologies Inc.</td>
<td>57</td>
<td>800-387-7578</td>
<td>mmempel@virox.com</td>
<td>www.virox.com</td>
</tr>
<tr>
<td>Wood Wyant Inc.</td>
<td>68</td>
<td>450-680-9700</td>
<td>Rhumphrey@woodwyant.com</td>
<td>www.woodwyant.com</td>
</tr>
</tbody>
</table>

To reach infection control professionals across Canada through the **Canadian Journal of Infection Control** and its targeted readership, please contact me directly at

1-866-985-9789

aran@kelman.ca
This spring MedPro Defense® unveils their most innovative line of gowns yet

To find out more about these innovative, user-friendly SMART Gowns contact your AMG representative or call customer service at 1-800-363-2381.

www.amgmedical.com
COMPREHENSIVE SOLUTIONS

AT EVERY POINT OF CONTACT

In a healthcare environment, where cleanliness is critical to providing quality care, a comprehensive solution is required to reduce healthcare associated infections. Ecolab’s Infection Prevention programs help ensure cleanliness is never compromised by providing the products, education and service you need to help reduce infections, improve patient satisfaction and protect your brand.

It’s protection where you need it.
Call 1.800.352.5326 or visit www.ecolab.com/healthcare.

Hand & Skin Care

For hand and skin care, Quik-Care™ Antimicrobial Foaming Hand Rub is formulated to provide effective kill at every application.

Antimicrobial Foaming Hand Rub

- Mild emollients promote skin health
- Fragrance free, dye-free formula absorbs quickly into skin
- No-rinse formula promotes use frequency