INSIDE:

Bacillus cereus in the intensive care unit at an acute care hospital

On jumping outside the box: Infection control education in the 21st Century

Case study on construction infection control

2005 Conference Review
IN CASE OF EMERGENCY

ACCELERATED™
HYDROGEN PEROXIDE

SECURITY, CONFIDENCE, ASSURANCE.
OUTBREAK MANAGEMENT BREAKS THE CHAIN OF INFECTION.

Accelerated Hydrogen Peroxide “AHP” is the disinfectant technology of choice whenever preventative measures are required and wherever outbreaks occur. Visit the OUTBREAK section at www.virox.com for information on products, protocols, references, support documents and endorsements, or call 1-800-387-7578.

VIROX™
ENGINEERING REVOLUTIONARY DISINFECTANTS FOR THE WAR AGAINST MICROBES.
Can You Identify the Risks?
Nine Areas Where 3M Can Help

When it comes to finding Infection Prevention Solutions, we can all make a difference.

For information on 3M Infection Prevention products and services, contact your 3M Health Care representative or visit www.3M.com/CA/IP

© 3M 2005. 3M is a trademark of 3M. Used under license in Canada. 0502-MS-21808
THE EFFICACY OF CHLORAPREP® IN TWO NEW APPLICATORS

ChloraPrep’s new 10.5mL applicator features patented new tinting technology that adds color to the solution as it passes through the sponge. The patented ampulized applicator eliminates the risk of contamination, protects the CHG molecule from degradation, and ensures a 2-year shelf life.

The new ChloraPrep® Swabstick provides significant improvement in performance over traditional swabsticks. It features a non-linting polyester polyurethane foam tip and a reinforced handle for friction application.

ChloraPrep, an FDA-approved patient preoperative skin prep, is the only 2% chlorhexidine / 70% alcohol-based antiseptic available which meets the CDC guidelines.¹

CDC guidelines for cutaneous antisepsis are based on a collection of clinical evidence indicating a significant reduction in infection when a 2% chlorhexidine-based antiseptic is used. A meta-analysis of independent clinical studies consistently demonstrates reduction rates of 50%.²

Visit chloraprep.com for directions on use of all ChloraPrep® products.

chloraprep.com


INFECTION CONTROL

Subscriptions are available from the publisher at the following rates:

- All Canadian prices include GST.
- Personal/institutional rates:
  - Canada: $30/$38 (GST # 100761253)
  - USA (in US funds): $28/$36
  - Other countries: $45/$60.

Editor’s Message ................................................. 66
President’s Message ............................................. 68
Message de le Président ....................................... 69
CHICA-Canada Research Fund ............................. 89
Board Nominations ............................................. 95
Controversies and Conundrums ......................... 101
Industry News .................................................. 108

VISION
CHICA-Canada will lead in the promotion of excellence in the practice of infection prevention and control.

MISSION
CHICA-Canada is a national, multidisciplinary, voluntary association of professionals. CHICA-Canada is committed to improving the health of Canadians by promoting excellence in the practice of infection prevention and control by employing evidence-based practice and application of epidemiological principles. This is accomplished through education, communication, standards, research and consumer awareness.

The Canadian Journal of Infection Control is the official publication of the Community and Hospital Infection Control Association (CHICA)-Canada. The Journal is published four times a year by Craig Kelman & Associates, Ltd. and is printed in Canada on recycled paper. Circulation 3000.

All rights reserved. © 2005 The Canadian Journal of Infection Control. The contents of this journal may not be reproduced in part or in full without the consent of the publisher.

The views expressed in this publication are not necessarily those of the publisher.

ISSN - 1183 - 5702

Indexed/abstracted by the Cumulative Index to Nursing and Allied Health Literature, SilverPlatter Information Inc. and the International Nursing Index (available on MEDLINE through NLM MEDLARS system).

The Canadian Journal of Infection Control is a “Canadian periodical” as defined by section 19 of the Canadian Income Tax Act. The deduction of advertising costs for advertising in this periodical is therefore not restricted.

SUBSCRIPTIONS
Subscriptions are available from the publisher at the following rates:

- All Canadian prices include GST.
- Personal/institutional rates:
  - Canada: $30/$38 (GST # 100761253)
  - USA (in US funds): $28/$36
  - Other countries: $45/$60.

Editor-in-Chief
Patricia Piaskowski, RN, HBScN, CIC

Editorial Board
Joanne Braithwaite, RN, BAA, CHPIc, CIC
Diane Thornley, ART
Allison McGeer, MD, FRCP
Cathy Munford, RN, CIC
Joanne M.D. Mousseau, RN, NP, MSc
Hélène Senay, MD
Nicole Tittley, HBSc, CIC, CRSP
Louise Holmes, RN, CIC
Dick Zoutman, MD, FRCPC
Scott Henwick, MD, FRCPC

Editorial Office
Patricia Piaskowski, RN, HBScN, CIC
Thunder Bay Regional Health Sciences Centre
980 Oliver Road
Thunder Bay, ON  P7B 6V4
(807) 684-6040
Fax: (807) 684-5878
E-mail: piaskowp@tbh.net

Website: www.chica.org

Publisher
3rd Floor, 2020 Portage Avenue
Winnipeg, MB R3J 0K4
Tel: (204) 985-9780
Fax: (204) 985-9795
www.kelman.ca
E-mail: info@kelman.ca

Editor - Kevin Hill
Design/Production - Dana Jensen
Sales Manager - Kristy Gagne

Publications Mail Agreement #40065075
Return undeliverable Canadian addresses to:
CHICA Canada
P.O. Box 46125, RPO Westdale,
Winnipeg, MB R3R 3S3
chicacanada@mts.net

The Canadian Journal of Infection Control • SUMMER 2005 63
2005 Board of Directors

Executive Officers

PRESIDENT
Richard Wray, RN, BA, CIC
Infection Control Practitioner
Hospital for Sick Children
555 University Avenue Room 7324
Toronto, ON M5G 1X8
(416) 813-8621
Fax: (416) 813-4992
E-mail: rick.wray@sickkids.on.ca

PRESIDENT-ELECT
Karen Hope, BSc, MSc
Infection Control Practitioner
Foothills Medical Centre
1403 29 Street NW
Calgary, AB T2N 2T9
(403) 944-2897
Fax: (403) 944-2484
E-mail: karen.hope@calgaryhealthregion.ca

SECRETARY
Pearl Orenstein, RN, BA, DIA, CIC
Infection Control Coordinator
SMBD Jewish General Hospital
3755 Cote St. Catherine
Montreal, QC H3T 1E2
(514) 340-8222 ext. 5778
Fax: (514) 340-7578
E-mail: porenste@lab.jgh.mcgill.ca

DIRECTOR OF FINANCE
Cynthia Plante-Jenkins, MTL, BSc(MLS), CIC
Clinical Informatics Specialist
Trillium Health Centre, Sussex Centre
500-90 Burnhamthorpe West
6 Mississauga, ON L5B 3C3
(905) 849-7100 ext. 3754
Fax: (905) 804-7772
E-mail: cplante-jenkins@thc.on.ca

DIRECTOR OF EDUCATION
Elizabeth Henderson, PhD
Epidemiologist
Peter Lougheed Centre
3500 26th Avenue NE
Calgary, AB T1Y 6J4
(403) 291-2571
Fax: (403) 943-4024
E-mail: elizabeth.henderson@calgaryhealthregion.ca

DIRECTOR, PROGRAMS & PROJECTS
Bruce Gamage, BSN, RN, BScN (Micb), CIC
Infection Control Consultant
BC Centre for Disease Control
655 West 12th Avenue
Vancouver, BC V5Z 4R4
(604) 660-6076 Fax: (604) 660-6073
E-mail: bruce.gamage@bccdc.ca

DIRECTOR, STANDARDS & GUIDELINES
Anne Matlow, MD
Director, Infection Control
555 University Avenue
Toronto, ON M5G 1X8
(416) 813-5996 Fax: (416) 813-4992
E-mail: anne.matlow@sickkids.on.ca

DIRECTOR OF FINANCE
Cynthia Plante-Jenkins, MTL, BSc(MLS), CIC
Clinical Informatics Specialist
Trillium Health Centre, Sussex Centre
500-90 Burnhamthorpe West
6 Mississauga, ON L5B 3C3
(905) 849-7100 ext. 3754
Fax: (905) 804-7772
E-mail: cplante-jenkins@thc.on.ca

DIRECTOR OF FINANCE
Cynthia Plante-Jenkins, MTL, BSc(MLS), CIC
Clinical Informatics Specialist
Trillium Health Centre, Sussex Centre
500-90 Burnhamthorpe West
6 Mississauga, ON L5B 3C3
(905) 849-7100 ext. 3754
Fax: (905) 804-7772
E-mail: cplante-jenkins@thc.on.ca

Other Positions

EDITOR-IN-CHIEF
Canadian Journal of Infection Control
Patricia Piaskowski, RN, HBScN, CIC
Thunder Bay Regional Health Sciences Centre
980 Oliver Road, Thunder Bay, ON P7B 6V4
(807) 684-6040 Fax: (807) 684-5878
E-mail: piaskowp@tbh.net

AUDITOR
Phillip Romanuk, CA
Stefanson & Lee
200-B Polo Park, 1485 Portage Avenue
Winnipeg, MB R3G 0W4
(204) 775-8975 promaniuk@slrca.ca

Professional Agents

LEGAL COUNSEL
Sidney Troister/J. Fay Sulley
Torkin, Manes and Cohen
1230 North Shore Blvd
Burlington, ON L7R 4C4
(905) 632-3737 ext. 5538
Fax: (905) 681-4890
E-mail: chicacanada@mts.net

Membership Services Office

MEMBERSHIP SERVICES OFFICE
Gerry Hansen, BA
Membership Services Office
PO. Box 46125 RPO Westdale
Winnipeg, MB R3R 3S3
Phone: (204) 897-9990
Toll Free: (866) 999-7111
Fax: (204) 895-9595
E-mail: chicacanada@mts.net

Deliveries Only:
67 Bergman Crescent
Winnipeg, MB R3R 1Y9
Would you believe they could be putting the baby at risk?

Whooping cough is contagious and can be serious.

And one of the most uncontrolled vaccine-preventable diseases in Canada.¹

Adults and adolescents are a major reservoir of pertussis and a primary source of transmission to infants.²⁻³

Infants < 1 year have the greatest incidence of pertussis and have the most severe cases with the greatest frequency of complications.²⁻⁴

Adacel offers effective pertussis protection for the rest of the family.

Adacel (dTap), containing a five-component acellular pertussis antigen, is indicated for the prevention of diphtheria, tetanus and pertussis in adolescents and adults aged 11 - 54 years.⁵

Adacel is not indicated to prevent the transmission of pertussis to infants.

NACI recommends pertussis immunization in adults and adolescents⁶

A single dose of dTap should be administered to adolescents and adults in place of the current Td booster to help protect against pertussis.⁷

**Recommend Adacel for your patients.**

---


---

Adacel® (Tetanus and Diphtheria Toxoids Adsorbed Combined with Component Pertussis Vaccine) is indicated for the prevention of tetanus, diphtheria and whooping cough in adolescents and adults aged 11 to 54 years.

Adacel is not indicated to prevent the transmission of pertussis to infants.

As with any vaccination, this vaccine should not be given to anyone who is allergic to any of the components in Adacel or who has previously experienced an allergic reaction to this vaccine. Some individuals may develop a fever, redness or tenderness at the injection site.

Adverse event rates observed with Adacel were comparable to those seen with the group that received a Td booster. The most commonly observed adverse events associated with the use of Adacel were primarily localized to the site of injection. Pain was the most common local reaction (88.6% vs. Td booster 88.7%), followed by erythema (11.8% vs. 6.6%) and swelling (16.7 16.6%). These local adverse events were generally mild and transient in duration. Systemic adverse events that were experienced after vaccination with Adacel (vs. Td booster) included: fever (9.4% vs. 6.0%), vomiting (2.4% vs. 0.7%), and headache (38.8% vs. 35.8%).

For full prescribing information, please see Adacel product monograph.

---

Sanofi Pasteur Limited
Cambridge Campus
1755 Steeles Avenue West Toronto, Ontario, Canada M2R 3T4
62005 Sanofi Pasteur Limited
Formerly known as Aventis Pasteur Limited

---

Adacel® is for Adolescents

The vaccines business of sanofi-aventis Group
On May 29, 2005, like many other Canadians, I turned the television to CTV and watched the television movie entitled *Plague City: SARS in Toronto*. Although many areas outside of Toronto did not see SARS patients, in Ontario we were all affected by the Code Orange alert that was declared. We all dealt with the numerous directives issued by the Ministry of Health and other agencies. We all watched as this dire situation unfolded in our province, our country and in the world. Colleagues across Canada were faced with preparing for potential spread of the deadly disease.

The most striking moment of the movie, for me, was watching the tragic story of the nurse who contracted SARS and was cared for by her colleagues and then died with no family allowed to be at her bedside. I recalled the many teleconferences where we listened to the infection control, infectious disease and public health specialists reviewing the cases of SARS. These anonymous cases included doctors and nurses and other health care professionals who had contracted SARS in their workplace. We later learned the names and stories of the two nurses and one physician who died after contracting SARS. We now had to consider that, as health care professionals, we could die in the line of duty.

Watching this movie and recalling the events of over two years ago, one can’t help but think about the next pandemic. The next pandemic, if current events unfold, could be caused by the H5N1 strain of avian flu. This strain is now considered endemic in bird populations and has affected humans in many parts of the Far East and Asia. This strain, according to the CDC, is proving to be far more deadly than SARS with an estimated case fatality rate of at least 50%.

Pandemic flu will not strike in just one area of our country or province; we will all be affected. There will be no ability to bring in experts and resources from outside our area to help us cope.

Unlike SARS, which did not spread in the community in Canada, pandemic influenza will affect large proportions of our population. Perhaps hospitals and other health care facilities will, in fact, be the safest places to be with our array of personal protective equipment.

Once again, infection control professionals will be called upon to provide leadership and expertise for a crisis unlike any the global health care system has faced since the 1918-19 Spanish influenza pandemic.

As healthcare organizations, communities, provinces, and countries around the world prepare for the impending pandemic, we can consider SARS a dress rehearsal, although on a much smaller scale.

How will the infection control and health care community respond? The answer to this may be reflected in a quote from the late John Wayne: “Courage is being scared to death—but saddling up anyway.”
Who says nurses can't have beautiful hands?

BEAUTIFUL HANDS IN 7 DAYS
Nurses who have worn Aloetouch exam gloves have seen beautiful hands in as quickly as one week.

ALOE – NATURE'S OWN SKIN CONDITIONER
The aloe vera gel that coats these gloves naturally moisturizes and hydrates your skin, helping to keep it soft and healthy.

CLINICALLY PROVEN
Aloetouch gloves are clinically proven to bring soothing relief to dry, irritated skin and minimize contact dermatitis.

PATENTED PROTECTION
Patented Aloetouch exam gloves surpass FDA guidelines for quality -- so you're assured of consistent protection.

Aloetouch
Ask for the Green Gloves!
Only from Medline

Aloetouch is a registered trademark of Medline Industries, Inc.
US Patent No. 6,274,154

www.medline.com
Toll Free 1-800-396-6996
PRESIDENT’S MESSAGE

Conference offered unique opportunity

Rick Wray, RN, BA, CIC

I t was a pleasure to attend the 2005 National Education Conference, Charting New Horizons, which was held in Winnipeg May 7-11. I would like to acknowledge the hard work, skill and hospitality of the individuals who helped to make it a great success; Ilana Warner, Conference Chair; Dr. John Embil, Scientific Program Chair; committee members, Nancy Gates, Leslie Klass, Elizabeth Omeniuk and Faye Penner; Conference Planner, Gerry Hansen; and Conference Assistant, Kelli Wagner. Thanks to the members of the Manitoba Chapter who hosted the conference and whose hospitality made us feel welcome in Winnipeg. Thank you to the Patron Members, Sponsors and Exhibitors who helped to make the conference possible.

The intent of the Scientific Program Committee as stated by Dr. Embil was “to highlight the exciting and challenging times in which we as professionals in infection prevention and control find ourselves, and to also bring forth the opportunities that lie ahead.” Throughout the conference, I heard from delegates that they had a sense of anticipation and new energy with regard to challenges in our field.

The conference location offered a unique opportunity to access local expertise. The virtual tour of the National Microbiology Laboratory, Canada’s only level four lab was fascinating. Dr. Frank Plummer, Scientific Director General of the National Microbiology Laboratory, gave us further insight into global infection control challenges in his keynote address.

The Novice ICP day was well received by a large number of new ICPs and by experienced ICPs who wanted to learn how to teach and mentor new colleagues. There is clearly an ongoing need for educational programs for new ICPs. This pressing need is also being met by two CHICA-Canada endorsed entry to practice on-line courses at Centennial College and Queen’s University. It was announced that the on-line entry to practice program developed by CHICA-Canada and supported by funds contributed by CHICA-Canada members will be launched as a pilot through the University of Calgary in the near future.

The extremely well attended pre-conference education day focusing on oncology and paediatrics demonstrates the growing complexity and specialized needs within the field of infection prevention and control. It was impressive to see the commitment to share expertise by those who attended the growing number of special interest groups. Karen Hope, President-elect, was kept very busy in her role as CHICA Board liaison to the interest groups and met with the chairs to look at ways to best support their needs.

I had the opportunity to attend the Chapter President’s meeting, chaired by Karen Hope, at which each of the presidents highlighted the tremendous work done by the chapters. A number

continued on page 70
MESSAGE DE LE PRÉSIDENT

Site du Congres nous a donne acces a l’expertise locale

Rick Wray, RN, BA, CIC


Tel qu’énoncé par le Dr Embil, le comité du programme scientifique voulait « faire ressortir l’époque fascinante et remplie de défis dans laquelle les professionnels en prévention des infections évoluent aujourd’hui et dégager les avenues futures. » Tout au long du congrès, les délégués m’ont dit qu’ils sentaient un nouveau dynamisme par rapport aux défis de notre secteur.

Le site du congrès nous a donné accès à l’expertise locale. Notre visite virtuelle du Laboratoire national en microbiologie, le seul laboratoire de niveau quatre au Canada, était fascinante. Le directeur général scientifique du Laboratoire national en microbiologie, le Dr Frank Plummer, nous a donné un aperçu des défis en prévention des infections à l’échelle mondiale.

De nombreux nouveaux ICP ont participé à la journée des novices ICP, de même que des ICP d’expérience qui voulaient apprendre comment enseigner à leurs nouveaux collègues et les encadrer. Il existe un besoin continu de programmes de formation pour les nouveaux ICP. Deux cours d’entrée à la pratique reconnus par CHICA-Canada et offerts en ligne par Centennial College et l’université Queen’s répondent à ces besoins. Un pilote du cours d’accès à la pratique mis au point par CHICA-Canada et financé par les membres de CHICA-Canada sera lancé bientôt par l’Université de Calgary.

La journée de formation pré-congrès sur l’oncologie et la pédiatrie a connu un vif succès, démontrant la complexité grandissante et les besoins spéciaux en prévention des infections. Il était impressionnant de voir le désir de partage d’expertise de ceux qui ont participé au nombre grandissant de groupes d’intérêt particulier. La présidente désignée, Karen Hope, a été très occupée en tant que liaison entre le conseil CHICA et les groupes d’intérêt et a rencontré les présidents afin de voir comment le mieux répondre à leurs besoins.

J’ai eu l’occasion de participer à la réunion des présidents de filiales, présidée par Karen Hope, réunion à laquelle les présidents ont mis en valeur l’important travail accompli par les filiales. Nous avons discuté de...
of valuable ideas were discussed to improve communication between the chapters and the Board. We will work hard to implement those ideas over the upcoming year. A valuable education session, facilitated by Joyce Groote, gave us all new insight into lobbying government, and it challenged our conceptions about who we are and what we do.

I’d like to congratulate and to thank each of the presenters who took the time to share their expertise with us through excellent quality oral and poster presentations. Attending the presentations and reviewing the posters is always my favorite part of the conference.

At the end of the week, when I thought my brain was full and there was nothing left to inspire me, we met to discuss the 2006 National Education Conference, Bridging Global Partnerships. It will be hosted by the SOPIC Chapter in London, Ontario, May 6-10, 2006. You won’t want to miss it!

Continued from page 68

Continued from page 69

façons d’améliorer les communications entre les filiales et le conseil, idées que nous mettrons à l’œuvre au cours de l’année prochaine. Un excellent atelier animé par Joyce Groote, nous a donné de nouvelles perspectives sur les relations gouvernementales et a remis en question nos idées préconçues sur qui nous étions et ce que nous faisons.

J’aimerais féliciter et remercier tous les conférenciers qui ont pris le temps de partager leur expertise avec nous lors d’excellentes présentations orales et de présentations d’affiches. Participez aux présentations et revoir les affiches sont mes moments préférés du congrès.

À la fin de la semaine, alors que je pensais que mon cerveau ne pouvait plus en prendre et qu’il n’y avait plus rien pour me surprendre, nous avons tenu une réunion sur le congrès 2006, Bridging Global Partnerships. Il sera organisé par la filiale SOPIC à London, Ontario, du 6 au 10 mai 2006. Incontournable!

Future Conferences

Infection Control Nurses Association (ICNA) International Conference
September 26-29, 2005
Torquay, U.K.
See www.chica.org for link

International Federation of Infection Control (IFIC)
October 13-16, 2005
Taksim, Istanbul
See www.chica.org for link

Agriculture’s Role in Managing Antimicrobial Resistance Conference 2005
October 23-26, 2005
Toronto, Ontario
See www.chica.org for link

In First in Sterilization

The Propper Trademark has been a symbol of quality in medical and laboratory products since 1935. At present, Propper products are covered by more than 50 trademarks and 100 patents. Today, Propper continues to provide reliable infection control products to hospitals and professional offices.
Avoid a Stick with a Simple Click

New and Improved!

SurGuard2™

The second generation of SurGuard™ is the first choice in needlestick protection.

The SurGuard2 Needle Protection System from Terumo features a unique, hinged needle locking system. This intuitive mechanism requires only one hand to activate and allows you to easily cover the tip of the needle, virtually ensuring protection against needlesticks. Just listen for the "click." When you hear it, you'll know you've activated a dependable defense against needlesticks.

- Sleek, thin, streamlined sheath
- Ratchet mechanism allows for precise positioning of the sheath so as not to obscure injection site
- Consistently bevel-up, sheath right needle orientation for low-angle injections
- Reduced "dead space"*
- Full compliance with OSHA's standards for needlestick safety

Terumo's full line of safety products includes:
SurGuard™ Safety Needles and Syringes
SurGuard™ Safety Allergy Syringes
SurGuard™ Safety Insulin Syringes
Surshield™ Safety Winged Needle Sets

To learn more about SurGuard2™ or to acquire samples for evaluation, call Winnie Jenkins at 1-800-283-7866 extension 4919 or visit our Web site: www.terumomedical.com.

*Reduced dead space compared to SurGuard™. Data on file.
**Bacillus cereus in the intensive care unit at an acute care hospital**

**ABSTRACT**

**Issue**

The genus *Bacillus* is comprised of aerobic spore-forming rods that are ubiquitous in nature. Even though *Bacillus* species have a wide range of distribution in the environment, including normal skin flora, they rarely cause true disease. One exception is *Bacillus cereus*, a well-known cause of food poisoning. *Bacillus cereus* can also cause opportunistic infections, mainly in the immunocompromised host.

Until recently, the Providence Health Care, St. Paul’s Hospital, Microbiology Laboratory infrequently identified *Bacillus cereus* from respiratory specimens of patients in the Medical Surgical Intensive Care Unit (ICU). Between the months of April and May 2002, the St. Paul’s Hospital, Microbiology Laboratory identified *Bacillus cereus* with increasing frequency in the respiratory specimens of ICU patients. The increasing incidence of *Bacillus cereus* was reported to Providence Health Care’s Infection Control Team.

**Project**

From June 17 to July 30, 2002, a cluster of nine sputum specimens from four ICU patients grew *Bacillus cereus*. The organism was not isolated from blood or any other sites. From June 17 to December 31, 2003, there were 44 patients with *Bacillus cereus* recovered from respiratory specimens.

**Results**

A focused investigation consisted of environmental culturing of: (i) pasteurizer machines in the Central Supply Department, (ii) ventilator temperature probes, and (iii) Laerdal resuscitators. Positive cultures were obtained from one ventilator temperature probe and two resuscitators.

**Lessons Learned**

Although the respiratory circuit was exposed to high-level disinfection, low-level disinfection of the temperature probe may have been a source of contamination leading to colonization of the respiratory tract with *Bacillus cereus*.

As a result of the investigation, Infection Control recommended cleaning and process changes, which included: (i) at a minimum high-level disinfection of the ventilator temperature probes, and (ii) reprocessing of the Laerdal resuscitators in the Sterile Supply Department after use.

Infection Control believes that these changes will be effective in reducing the potential transmission of *Bacillus cereus* as well as more serious respiratory pathogens.

**INTRODUCTION**

The genus *Bacillus* is comprised of aerobic spore-forming rods that are ubiquitous in nature. *Bacillus* spp. have a wide range of distribution in the environment, including normal skin flora. Despite this organism’s wide range of distribution, *Bacillus* spp. rarely causes disease. One exception is *Bacillus cereus*, a well-known cause of food poisoning. *Bacillus cereus* can also cause opportunistic...
infections, mainly in the immunocompromised patient\textsuperscript{4,5}. Infections in patients from high-risk areas such as Intensive Care Units and Neonatal Intensive Care Units may occur as a result of contaminated respiratory equipment\textsuperscript{6,7,8}.

**Background**

St. Paul’s Hospital (SPH) is part of Providence Health Care. Saint Paul’s Hospital is a 400-bed acute academic and research hospital located in downtown Vancouver. The Medical/Surgical Intensive Care Unit (ICU) is an 18-bed unit with four, four bed pods and two single rooms. Virtually all patients are ventilated during their ICU stay.

Between April and May 2002, the SPH Microbiology Laboratory identified \textit{Bacillus cereus} with increasing frequency from the sputum specimens of ICU patients. This increasing incidence of \textit{Bacillus cereus} was reported to the Infection Control Team. In May 2002, a single technologist was assigned to monitor and record \textit{Bacillus cereus} in ICU respiratory samples and report clusters of \textit{Bacillus cereus} to the Infection Control Team.

From June 17, 2002 to July 30, 2002, a cluster of nine sputum specimens from four ICU patients grew \textit{Bacillus cereus}. As a result of the cluster, an investigation was launched with targeted environmental sampling.

**METHODS**

\textit{Bacillus cereus} was isolated and identified according to standard laboratory methods using a 5\% sheep blood agar (BBL Columbia Agar Base, Becton, Dickinson and Company, Sparks, MD, USA). Egg yolk agar (PML Microbiologicals, Wilsonville, OR, USA) was used to help identify the \textit{Bacillus} species. Motility was checked using semisolid agar (Oxoid agar, Oxoid LTD, Basingstoke, Hampshire, England).

**Literature review**

For the literature review the key words “\textit{Bacillus cereus}” and “respiratory” were used in the PubMed search engine to identify related articles.

**Investigation**

Targeted environmental culturing of the Central Supply Department and the ICU started in August 2002. Specimens were collected with a pre-packaged collection kit (Starplex Scientific, Ontario, Canada), labeled and sent to SPH Microbiology Laboratory for processing.

The environmental cultures in Central Supply Department were taken from two Olympic Pasteurmatic Systems\textsuperscript{®} (Olympic Medical, Seattle, Washington, model number 52636). The Pasteurmatic System\textsuperscript{®} consists of two components (Figure 1). The washers, which were cultured at four sites: (i) the exit drain; (ii) overflow drain above water line; (iii) water in the bottom of the washer; and (iv) water at the edge of the washer basin. The second component, the pasteurizer, was cultured at three sites: (i) overflow drain above the water line; (ii) water at the edge of the basins; and (iii) the inlet pipe. In addition, one small and large instrument rack were cultured at the processing site.

In the ICU, two ventilators (Servo-ventilator 300, Siemens International, Elema Sweden) were cultured. Two ventilators (1 and 2), with the same five sites for each ventilator, were cultured: (i) along the ventilation tubing; (ii) ventilation tubing heater wire; (iii) humidifier canister; (iv) terminal end of the temperature probe, model number 900 MR 560, Fischer & Payker, Auckland New Zealand (Figure 2); and (v) ventilator circuit endotracheal tube connection.

During the ICU equipment screening the respiratory technologists raised a concern that the Laerdal resuscitators could act as reservoir for contamination of the patient’s respiratory tract. Each patient in the ICU is assigned a resuscitator, positioned behind the head of the patient’s bed. The recommendation is to use high-level disinfection on hand-powered resuscitation bags between patients\textsuperscript{10}. There is no recommendation regarding cleaning for concurrent uses on the same patient\textsuperscript{10}. Eight Laerdal resuscitators were cultured at the endotracheal connection of the resuscitator (Figure 3).

**RESULTS**

**Literature review**

Reports of \textit{Bacillus cereus} outbreaks associated with pasteurizing equipment and contaminated respiratory equipment have been published. Bryce et al reported an outbreak of \textit{Bacillus cereus} in respiratory equipment in the ICU at Van-
Pasteurizers used for high-level disinfection of respiratory equipment were implicated as the source of the *Bacillus cereus* outbreak. Van Der Zwet discussed an outbreak of *Bacillus cereus* in a neonatal ICU associated with respiratory equipment used for manual ventilation. The exterior of the respiratory equipment was regularly cleaned with detergent that had limited sporicidal activity. Health Canada and Centers for Disease Control Guidelines recommend high-level disinfection for respiratory equipment.

### Investigation

The ventilators cultured had been cleaned with a quaternary ammonium disinfectant and were ready for use. The respiratory equipment had been pasteurized using the Olympic Pasteurization System. The temperature probes were routinely cleaned with a quaternary ammonium compound, which is a low-level disinfectant. As the temperature probes are inserted through the breathing circuit in close proximity to the endotracheal tube the Infection Control Team felt they were an integral part of the respiratory system and must be subjected to high-level disinfection (Figure 2).

There was no growth of *Bacillus cereus* from the washers, pasteurizers or racks in the Central Supply Department (Table 1). One of two ventilator temperature probes, which had been cleaned and was ready for use, was positive for *Bacillus cereus* (Table 2). Two of eight resuscitator connections were positive for *Bacillus cereus* (Table 3).

From June 2002 to December 2003 the number of isolates of *Bacillus cereus* identified in the respiratory specimens of ICU patients, ranged 0 to 5 per month for a total of 44 patients (Figure 4).

### DISCUSSION

The culture results indicated that the ventilator temperature probes and the resuscitators were colonized with *Bacillus cereus*. The culture results indicated that the Pasteurmatic System and the respiratory tubing, which had been pasteurized, were not contaminated. The Infection Control goal was to attain a minimum of high-level disinfection for the resuscitators and the temperature probes. Strategies to achieve the goal were discussed with the Respiratory Services Leader and Supervisor.

In August of 2002, the action agreed upon was to subject the temperature probes to a one-time sterilization with Sterrad. Thereafter the probes would be cleaned and soaked for 10 minutes in 70% alcohol between patient uses, which would provide an intermediate level of disinfection. Probes would not be steam sterilized or pasteurized between patient uses because the Fischer & Payker representative confirmed the temperature probes would only tolerate low temperature high-level disinfection/sterilization systems. There were not enough temperature probes to send the probes to Central Supply Department at once and the Respiratory Services Supervisor stated there were no funds available to purchase extra temperature probes in order to ensure routine high-level
Désinfection perfectionnée des surfaces dures et hygiène des mains grâce à nos serviettes!

SANI-CLOTH® – Serviettes jetables préhumidifiées
- Bactéricide, tuberculocide, et virucide.
- Nettoie, désinfecte et désodorise les surfaces dures non poreuses.
- Formules à haute et à basse concentration d’alcool pour toutes les situations.

SANI-DEX® – Essuie-mains antimicrobiens
- Efficace contre les bactéries Gram positif et Gram négatif (y compris le SARM et l’ERV) et contre les champignons.
- Contient 0,5 % de chloroxylène pour une action désinfectante persistante.
- Enlève les débris et la saleté.
- La formule émolliente aide à garder la peau hydratée.

Convenience, Compliance, Control
Commodité, Conformité, Contrôle
Number of ICU patients with *B. cereus* identified in respiratory specimens from June 2002 - December 2003.

Table 1. Screening Results for the Pasteurization System® in Central Supply Department

<table>
<thead>
<tr>
<th>Site cultured</th>
<th>Washer 58</th>
<th>Washer 12A</th>
<th>Pasteurizer 12</th>
<th>Pasteurizer 88</th>
<th>Racks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain</td>
<td>Negative</td>
<td>Negative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hole above water line</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Water bottom</td>
<td>Negative</td>
<td>Negative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water edge</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Basket</td>
<td>Negative</td>
<td>Negative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In pipe</td>
<td>Negative</td>
<td>Negative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Negative</td>
</tr>
<tr>
<td>Small</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Negative</td>
</tr>
</tbody>
</table>

Table 2. Screening Results for Ventilators in ICU

<table>
<thead>
<tr>
<th>Ventilator</th>
<th>Number 1</th>
<th>Number 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilator tubing</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Heater wire</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Top canister</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Temperature probe terminal end</td>
<td>Negative</td>
<td><em>Bacillus cereus</em></td>
</tr>
<tr>
<td>Ventilation circuit terminal end</td>
<td>Negative</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Table 3. Screening Results for Laerdal Resuscitators In the ICU

<table>
<thead>
<tr>
<th>Laerdal Resuscitator</th>
<th>Number 1</th>
<th>Number 2</th>
<th>Number 3</th>
<th>Number 4</th>
<th>Number 5</th>
<th>Number 6</th>
<th>Number 7</th>
<th>Number 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results</td>
<td>Neg*</td>
<td>Neg</td>
<td>Neg</td>
<td><em>Bacillus cereus</em></td>
<td>Neg</td>
<td><em>Bacillus cereus</em></td>
<td>Neg</td>
<td>Neg</td>
</tr>
</tbody>
</table>

* Neg refers to; Negative results, no growth of Bacillus cereus
disinfection or sterilization after each patient use. Recently released Central Supply Department Guidelines recommend that respirometers and ventilator thermometers be subjected to sterilization or high-level disinfection between use on different patients.\(^{11}\)

The Laerdal resuscitators were not disinfected after concurrent patient uses by the same patient. The action agreed on was that the mouthpiece and flex extension tubing would be reprocessed within 24 hours after use on the same patient. The reservoir bag would be reprocessed when the patient left ICU or when the exterior parts became visibly soiled.

Further changes in the ICU may have helped to reduce the burden of *Bacillus cereus* in the environment. In December of 2002, all carpet in the ICU was removed and replaced with sealed linoleum. In September of 2003, the ICU unit was subjected to enhanced cleaning where patients were reassigned in order to empty the single and four-bed patient care pods allowing the cleaner full and unencumbered access to clean all areas of the pod. In December of 2003, each patient care pod was painted and subjected to enhanced cleaning (Figure 4).

In March of 2004, the leaders of the Providence Health Care Respiratory Department purchased a sufficient number of ventilator temperature probes to ensure that each ventilator temperature probe was subjected to low temperature sterilization (Sterrad®) before patient use. The Respiratory Department leaders described the benefits of increasing the number of temperature probes as: reducing the time respiratory therapists spend cleaning temperature probes, assuring that respirometers and ventilator thermometers be subjected to sterilization or high-level disinfection between use on different patients.

CONCLUSION

An investigation was launched as a result of an increased number of isolates of *Bacillus cereus* in respiratory specimens from ICU patients. *Bacillus cereus* was isolated in one ventilator temperature probe in the ICU. Although the other parts of the system had received pasteurization, the probes had only been cleaned with a quaternary ammonium disinfectant between uses on different patients. The temperature probe is part of the respiratory circuit and as such the Health Canada Guidelines recommend high-level disinfection. The identification of this practice resulted in a change in the processing of the temperature probe. A low temperature method (Sterrad®) was used to sterilize all probes at the time of the investigation. However, due to an insufficient number of probes, as an interim measure the probes were cleaned and then soaked in 70% alcohol for 10 minutes.

As of March 2004, the Providence Health Care, Respiratory Department purchased a sufficient number of ventilator temperature probes to ensure that each probe is subjected to low temperature sterilization (Sterrad®) before it is used in each patient’s ventilation circuit. *Bacillus cereus* was also isolated from two Laerdal resuscitators. Resuscitators are pasteurized between patients, but not on concurrent uses for the same patient. The practice has been changed so that the mouthpiece and flex tubing is changed within 24 hours after use. The reservoir and external parts are changed when visibly soiled.

Since the investigation was commenced, the number of cases of *Bacillus cereus* in respiratory samples has been reduced, but has not been eliminated. As of March 2004, the laboratory-based *Bacillus cereus* surveillance is broadened from focusing on ICU sputum specimens to specimens from blood, tissue and sputum from throughout Saint Paul’s Hospital. There continues to be no cases of bacteremia or other infections with the *Bacillus cereus* organism.

References

11. Tablan OC, Snordson LJ, Besser R, Bridges C, Hajjek R. MMWR; Guidelines for Preventing Health-Care-Associated Pneumonia. March 26, 2004 / 53(RR03); 1-36
Ansell clinical assistance: your hands’ best friend.

Not only does Ansell produce high-quality gloves - it’s also committed to offering you high-quality services, such as a clinical consultant. For info or assistance, call 1 800 363-8340.
Strike first. Strike fast.

New ACTICOAT Moisture Control combines the power of nanocrystalline silver technology with the high absorbency of the hydrocellular foam core to:

- Strike down over 150 pathogens, including MRSA and VRE
- Deliver rapid release and sustained concentration of silver to prevent and reduce infection
- Provide superior absorption to remove excess exudate while promoting a moist wound environment for rapid healing

Strike now and learn about ACTICOAT by visiting www.acticoat.com or by calling 1-800-463-7439 for information and samples.

*In vitro data on file: Smith & Nephew, Inc. Scientific Background #009003*

*Trademark of Smith & Nephew © 2005. **SILOCRYST is a trademark of NUCRYST Pharmaceutical Corp., used under license by Smith & Nephew, Inc.*
The recent emphasis on safety in healthcare has highlighted the importance of professional behaviours in affecting patient care outcomes, but behaviour change remains a great challenge to the infection control community. Traditional educational modalities such as didactic lectures and printed materials have failed to stimulate sustained behaviour change, and educators need to think outside the box. This report describes an infection control workshop delivered to nurses that was based on the unconventional educational methods of storytelling, dramatic performance, problem-based learning, and multimedia. Although behavioural outcomes were not measured, the response to the workshop was exceptionally positive. The educational strength of these methods resides in their appeal to imagination, their integrative tendencies, and the promotion of dialogism.

Key words: infection control, education, storytelling, dramatic performance, dialogism

INTRODUCTION

Increasing awareness of adverse events in Canadian healthcare facilities, and the threat posed by the nosocomial transmission of infectious agents such as Clostridium difficile and SARS-associated Coronavirus, have highlighted the importance of basic infection control practices. However, observation of patient care practices and feedback from staff, educators, and nursing unit managers revealed that infection control practices were not well understood or practiced in the Calgary Health Region. Nursing staff were uncertain about which kind of isolation practices to use, when to use them, and what to teach patients and visitors regarding necessary precautions. This unsatisfactory situation existed despite numerous educational opportunities, newsletters, patient education materials, policy and procedure manuals, and signage. It was concluded that familiar material should be presented in new ways to influence behaviour change. Therefore, nursing educators and infection control professionals collaborated on a joint educational workshop that is described in this report.

METHODS

“The Bug Stops Here Workshop” was a collaboration of the Acute Medical Nursing Specialty Program and the Regional Infection Prevention and Control Program. A total of nine nurse educators and infection control professionals planned and conducted the four-hour workshop which was held on two occasions ten days apart. Senior medical nurses were invited to attend and there was a nominal registration fee. The goal of the workshop planners was to influence nursing behaviour in relation to appropriate implementation of infection control isolation precautions and hand hygiene. The content of the workshop is shown (Table 1). Traditional didactic presentations were abandoned in favour of dramatic performance, storytelling, problem-based interactive sessions, and multimedia presentations. A brief evaluation questionnaire was administered to the attendees at the conclusion of the workshop.
suggests that such modalities have only weak or moderately context of continuing medical education, scientific evidence educational materials, and practice audit with feedback. In the healthcare professionals include didactic lectures, printed Traditional modalities for influencing behaviour change among workshop would change their nursing practice (Figure 2). to learn (Figure 1) and 62% stated that the content of the favourable (Table 2). Sixty-six percent of the respondents Comments about the workshop were generally highly workshop and all of them completed the evaluation survey. One-hundred-nineteen senior medical nurses attended the workshop and all of them completed the evaluation survey. Comments about the workshop were generally highly favourable (Table 2). Sixty-six percent of the respondents believed that the workshop presentations were a helpful way to learn (Figure 1) and 62% stated that the content of the workshop would change their nursing practice (Figure 2).

RESULTS

One-hundred-nineteen senior medical nurses attended the workshop and all of them completed the evaluation survey. Comments about the workshop were generally highly favourable (Table 2). Sixty-six percent of the respondents believed that the workshop presentations were a helpful way to learn (Figure 1) and 62% stated that the content of the workshop would change their nursing practice (Figure 2).

DISCUSSION

Traditional modalities for influencing behaviour change among healthcare professionals include didactic lectures, printed educational materials, and practice audit with feedback. In the context of continuing medical education, scientific evidence suggests that such modalities have only weak or moderately strong effects on improving professional practice or patient health outcomes. However, educational interventions that enhance learner participation—such as interactive workshops, academic detailing, or computer-based decision support—have strong or moderately strong behavioural effects. In addition, the use of multiple educational modalities together is more effective than single interventions.

The presented report describes an innovative attempt to influence behaviour change through the use of multiple, unconventional, educational modalities including storytelling, dramatic performance, interactive problem-solving, and multimedia presentation. Such an approach involved considerably more preparatory effort than a series of didactic lectures, but our gambit was well-received and a majority of workshop attendees stated that they would make changes in their professional practice as a result of what they had experienced. Of course, expressing an intention to change practice is not the same as actually changing one’s practice, and a shortcoming of the present study is that actual adherence with infection control practices was not subsequently observed and documented. However, it is difficult to obtain such documentation because it would entail surreptitious observation of specific
Breakthrough DISINFECTANTS Designed To Kill

• Introducing the first and only disinfectant that works in 98% organic soil, at 791ppm hard water.

• Proof of killing bacteria in near 100% organic soil is the real deal from an epidemiological perspective.

• Microgen formulations allow you to reduce cost by 30-50% vs. ready-to-use.

D-125 Master Label declares efficacy against 133 microorganisms. Below are associated with nosocomial infections.

For the complete list, go to www.microgeninc.com, click on “milestones”

Antibiotic Resistant Gram Negative Rods
Pseudomonas aeruginosa (Sulfa, Cefatoxime, Nitrofurantoin, Tetracycline, Amikacin, Ampicillin, Cephalothin and Bactine Resistant)
Escherichia coli (Sulfa, Tetracycline, Ampicillin, and Penicillin Resistant)
Klebsiella oxytoca (Sulfanilamide and Tetracycline Resistant)
Klebsiella pneumoniae — type 1 (Cephalothin, Ampicillin, Sulfa and Tetracycline Resistant)
Morganella morganii (Penicillin and Tetracycline Resistant)
Enterobacter agglomerans (Ampicillin and Sulfaaminamide Resistant)
Salmonella choleraesuis (Antibiotic Resistant)

Concentrates • Sprays • Wipes

MICROGEN INC
A Microbiology Surface Chemical Distribution Network
info@microgeninc.com • www.microgeninc.com
1-800-420-7522 x11
Figure 1. Audience appraisal of the value of the workshop learning format

**Value of the Learning Format**

- **Very useful**: 70%
- **Between very and moderately useful**: 20%
- **Between moderately and not useful**: 10%
- **Not useful**: 0%

Figure 2. Audience perceptions of the impact of the workshop on professional practice

**Impact on Professional Practice**

- **I will make changes**: 60%
- **Between make changes and some changes**: 20%
- **I will change in some ways**: 10%
- **Between some changes and not at all**: 0%
- **Not at all**: 0%
individuals to measure adherence in workshop attendees versus non-attendees. It may also be naïve to assume that a single workshop can stimulate long-term behavioural change; sustained change is likely to depend on repeated educational interventions as pointed out in the social marketing literature.10

Why was the workshop appealing, and why should infection control professionals seriously consider the adoption of these unconventional educational methods? We believe that the answer lies in the participative, integrative, and imaginative nature of these modalities. Storytelling is one of the oldest forms of human communication, and the capacity to understand stories appears to be innate. Children can listen to stories as early as two years of age, and continue to delight in them until they enter grade school at which time they are taught that knowledge is expressed not in narratives but in abstract principles.11 As a result, adult organizational life is “denarrated” in favour of abstraction, logic, and “the argument culture.”12 But the polemic against storytelling is in fact ancient: when the Greek philosopher Plato described the ideal city in his dialogue The Republic, he excluded poets (the storytellers of his day) from living there because of their ability to persuasively communicate ideas that were disagreeable to him. As stated by Havelock in his Preface to Plato, “…what Plato is pleading for could be shortly put as the invention of an abstract language of descriptive science to replace a concrete language of oral memory.”13 Plato’s legacy is evident in our contemporary belief that behaviour change in healthcare is best stimulated by rational arguments and the presentation of scientific evidence. But people within organizational cultures are not very rational and knowing “the facts” may not change behaviour.14

Storytelling has numerous educational and leadership benefits: it is easy and natural to do, captures the attention, facilitates thinking, changes perception, aids memory, links theory to practice, and engages emotions and values.15-19 These benefits reflect the ability of stories to “render whole” as they portray the actions of characters within settings. In other words, stories naturally provide the contexts that interpret the meaning of human behaviours. In addition, storytelling can influence behaviour because it requires the storyteller and audience to co-participate in the creation of an imagined world with new possibilities and new ways of living and acting.15 It turns out that this connection between imagination and behaviour change is crucial: the French philosopher Paul Ricoeur posits that behaviour change is bounded not by knowledge or rationality, but by imagination. It is through imagination that people “try out” possible courses of action, compare and evaluate their motives, and decide if they have the power to act.20 But there is a deeper significance to storytelling than its utility for behaviour change. As Alasdair MacIntyre states, “…man is in his actions and practice, as well as in his fictions, essentially a story-telling animal. He is not essentially, but becomes through his history, a teller of stories that aspire to truth. But the key question for men is not about their own authorship; I can only answer the question ‘What am I to do?’ if I can only answer the prior question ‘Of what story or stories do I find myself a part?’”21 Thus MacIntyre asserts that people do not tell stories to explain their actions in the real world: they tell stories because their life in the real world unfolds as a story, and the meaning of that story guides their actions. The preceding insights inform us that narratives are profoundly connected to human motivation and action, and therefore infection control professionals who lead change should consider storytelling as an alternative educational modality to scientific argument. Those who are interested in trying out storytelling are encouraged to seek further information (see references), attend a storytelling workshop (check with your organization’s Learning and Development program or a local college), and just plain do it (this requires some courage). Great rewards are in store for those who dare to risk.

Much of what has been said about storytelling applies equally to dramatic performance, which is essentially storytelling with the addition of bodily movements that enhance visual communication and the appeal to imagination. But the bodily dimension does more than merely augment communication because human beings depend entirely on their bodies to experience and know the world. Thus, dramatic performance resonates with the “embodied” nature of human existence. Dramatic performance also draws its participants into a mutual interaction that allows them to explore complex or difficult issues in a safe, non-threatening context: as the participants identify with fictive roles and situations encountered in health care, and as they join knowledge with memories and feelings, meanings are acquired which motivate and define action.22 How practical is it to ask infection control programs to conduct dramatic performances for the sake of education? As our report demonstrates, it is possible to rely on amateurs (health care professionals) to do plays, but such an endeavour is very time-consuming, and the quality of the educational product would be greatly enhanced by involving drama professionals in script development, performance coaching, or the performance of the play itself. This of course poses financial challenges to infection control and educational/training programs. We suggest that financial restraints could be overcome by partnering with other agencies (for example nursing education, learning and development programs, quality improvement or safety initiatives, or innovation grants) to find funding and talent. In our own institution, we have obtained an innovation grant to implement a social marketing program to promote hand hygiene, and we intend to include dramatic performance by professional actors as one of the communication channels within that program.

A third educational modality used in our workshop was problem-based learning. Workshop participants were provided with real-life patient microbiology reports and asked to interpret their clinical significance. The audience worked as a team, pooling knowledge to achieve a consensus interpretation. A facilitator provided hints when the audience lacked crucial knowledge to achieve consensus. Problem-based learning requires learners to engage in a group process that requires them to think aloud, collaborate, integrate old and new knowledge, and critically reflect on the meaning of what they have learned.23 Problem-based learning can transform the superficial learning of “what?” and “how?” into the deep learning of “why?” Infection control educators are encouraged to seek additional resources on problem-based learning.24

In conclusion, infection control educators in the 21st century can choose to be either “monologic” or “dialogic” in their approach. In an essay entitled “Methodology for the Human Sci-
ences,” the Russian cultural theorist Mikhail Bakhtin writes:

The exact sciences constitute a monologic form of knowledge: the intellect contemplates a thing and expounds upon it. There is only one subject here – cognizing (contemplating) and speaking (expounding). In opposition to the subject there is only a voiceless thing. Any object of knowledge (including man) can be perceived and cognized as a thing. But a subject as such cannot be perceived and studied as a thing, for as a subject it cannot, while remaining a subject, become voiceless, and consequently, cognition of it can only be dialogic.  

Thus, traditional educational modalities such as didactic lectures, posters, and written materials are monologic, and reflect the assumption that knowledge is something “out there” ready to be poured into the empty vessel that constitutes the learner’s mind. In the monologic context, the learner is passive and “voiceless,” in effect an object receiving action, while the educator is the sole subject who knows and acts. Is it conceivable that the disappointing impact of some educational modalities on professional behaviours reflects the inadequacy of a monologic approach? The alternative approach is to be dialogic, to engage learners not as objects but as subjects, independent knowers and doers who possess their own voice, and whose words must be taken into account. In this sense, dialogism is not a method but a relationship between educators and learners built on participation and interaction. Storytelling, dramatic performance, and problem-based learning are social learning methods that offer the hope of resolving the intractable behavioural challenges of the past as we enter a new century of infection prevention and control.

“The play’s the thing wherein I’ll catch the conscience of the king.” (Shakespeare’s Hamlet Act II, scene ii)

References
3. Varia M, Wilson S, Sarwal S, McGeer A, Gournis E, Gala-

24. Queen’s University School of Medicine Problem-Based Learning Home Page. Available at: http://meds.queensu.ca/medicine/pbl/pblhome.htm.
The Infection Control Audit Toolkit is intended to be a resource that provides templates for infection control audits that you can use in your practice. The audits were designed by CHICA-Canada members to be used in a variety of health care settings. All audits have been reviewed by the CHICA-Canada Standards and Guidelines committee and are provided with permission from the developers.

To date, there are 11 audits that have been submitted and reviewed. We encourage you to send any additional audits that you have developed for use in your facility. Permission to use the audits must be provided in writing from the developer(s) and/or facility.

The audits currently include:
- Dental Audit Form
- Endoscopy Audit
- Hemodialysis Unit Audit
- High Level Disinfection – Outside SPD Audit
- Infection Prevention and Control Risk Assessment Guide
- Hospital-wide Infection Control and Prevention Audit and Template
- Ophthalmology O.R. Cluster Investigation and Procedure Assessment
- O.R. Audit
- Patient/Resident Service Units Audit
- Renal Unit Infection Control Audit Form
- Respiratory Outbreaks in Long Term Care Facilities Audit

The Toolkit will go into production in June 2005 with a June 30th publication date. The final product will be a binder with copies of the audits both as a printed copy and on CD. Pre-orders are welcomed. The Toolkit was introduced at the 2005 conference in Winnipeg with an invitation to pre-order at a special conference rate.

The special conference rate will be extended to all purchasers to **July 31, 2005**. An update to the Toolkit will provided for the first year **at no additional charge**.

### CHICA-CANADA INFECTION CONTROL AUDIT TOOLKIT

**PRE-ORDER INFORMATION - Publication Date: June 30, 2005**

<table>
<thead>
<tr>
<th>Toolkits Ordered</th>
<th>MEMBER (ordered after 2005 Conference)</th>
<th>NON-MEMBER (ordered after 2005 Conference)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$120.00</td>
<td>$170.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shipping &amp; handling</th>
<th>MEMBER RATE (CDN)</th>
<th>NON-MEMBER RATE (CDN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kit - $10</td>
<td>$150 to June 15/05</td>
<td>$170 after</td>
</tr>
<tr>
<td>2 kits - $15</td>
<td>$170 after</td>
<td></td>
</tr>
<tr>
<td>3 or more - $20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GST</th>
<th>MEMBER RATE (CDN)</th>
<th>NON-MEMBER RATE (CDN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST – 7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HST – 15%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL</th>
<th>MEMBER RATE (CDN)</th>
<th>NON-MEMBER RATE (CDN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>~$130.00-150.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New Audits – Year 1</th>
<th>MEMBER RATE (CDN)</th>
<th>NON-MEMBER RATE (CDN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/C</td>
<td>N/C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New Audits – Year 2</th>
<th>MEMBER RATE (CDN)</th>
<th>NON-MEMBER RATE (CDN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$10.00 per audit</td>
<td>$15.00 per audit</td>
</tr>
</tbody>
</table>

### PRE-ORDER FORM

**Yes!** I want to pre-order the CHICA-Canada Infection Control Audit Toolkit.

<table>
<thead>
<tr>
<th>No. of Toolkits Ordered</th>
<th>MEMBER RATE (CDN)</th>
<th>NON-MEMBER RATE (CDN)</th>
<th>Shipping &amp; handling</th>
<th>GST/HST*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$100 to July 31/05</td>
<td>$150 to June 15/05</td>
<td>1 kit - $10</td>
<td>*Payable by residents of NS, NB, NF</td>
</tr>
<tr>
<td></td>
<td>$120 after</td>
<td>$170 after</td>
<td>1 kits - $15</td>
<td>GST – 7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 kits - $20</td>
<td>HST – 15%*</td>
</tr>
</tbody>
</table>

**Expiry Date:**

<table>
<thead>
<tr>
<th>PAYMENT – CHEQUE PAYABLE TO CHICA-CANADA – OR · VISA, MASTERCARD</th>
</tr>
</thead>
</table>

**Signature_________________________________________________**  **NAME OF CARD HOLDER (PLEASE PRINT):**

PLEASE PRINT COMPLETE MAILING ADDRESS:

__________________________________________________________

__________________________________________________________

__________________________________________________________

Telephone: ________________________________________________

Forward Pre-Order Form with payment to:

CHICA-Canada
PO Box 46125 RPO Westdale
Winnipeg MB R3R 3S3
 Telephone: 1-204-897-5990/1-866-999-7111
 Fax: 1-204-895-9595 email: chicacanada@mts.net
Infection control software saves money
... and people

THE PROBLEM:
INFECTIONS ACQUIRED BY PATIENTS IN HOSPITALS ADD ALMOST $5 BILLION TO NORTH AMERICAN HEALTH COSTS EACH YEAR.*

That’s the dollar cost. The hospital’s budget doesn’t go up when nosocomial infections lengthen hospital stays, but the costs do.

And the dollar cost is the least of it. The human cost – in terms of delayed or compromised recoveries, extended separations from loved ones, reduced health going forward and even death – can’t be calculated.

It’s there. It’s real. Both the financial and human costs are intolerable.
And it doesn’t have to be that way.

THE SOLUTION:
WESCOM’S INFECTION CONTROL & OUTBREAK ADMINISTRATOR (ICOA)™ GIVES YOU THE ABILITY TO PREVENT AND MANAGE INFECTIONS.

That’s why Wescom’s ICOA™ is the fastest selling infection control software product in North America. It was developed by leading Infection Control Practitioners and it’s being used in a growing number of leading hospitals in Canada and the U.S.

It’s easy to use and provides the most valuable and comprehensive infection prevention information. ICOA™ also supports the industry standard HL-7 interfacing with Hospital Information Systems (HIS).

That means Infection Control Practitioners spend less time collecting data, and the entire health services team has the timely and in-depth information they need to prevent and manage infections.

It saves money. Wescom’s ICOA™ costs as little as $1,000 for a small facility and about $10,000 for a large hospital. The financial savings can be multiples of that purchase price in a single month.

And the health outcome savings – in terms of reduced mortality & morbidity rates related to infection – are, literally, priceless.

FIND OUT MORE ABOUT WESCOM’S ICOA™ TODAY, BECAUSE NOSOCOMIAL INFECTION CONTROL SAVES MONEY... AND PEOPLE.

* Sources: William Jarvis of the Centers for Disease Control and Prevention, Atlanta.

- Hospitals can lose $600 (minimum) for a urinary tract infection that adds four days to a hospital stay.
- The patient loses four days of his or her life – and possibly more.
- A pneumonia infection that requires seven to thirty days’ extra hospital stay will cost the hospital at least $5,000.
- The patient cost?
- The value of prevention is priceless.

For more information call: 1-800-277-5889 or visit our web-site at: www.wescomsolutions.com
CHICA-Canada is pleased to announce an exciting new opportunity for our members. We have established a research fund. A maximum grant of $50,000 is available to CHICA members to support research projects designed to demonstrate the value and importance and improve the practice of infection prevention and control in all health care settings.

Distribution of the grant money will be based on the number of successful applicants and the merit of the proposals received.

The application deadline is September 1, 2005. Please see the Application form and guidelines on page 89 or on the CHICA web site www.chica.org.

Bruce Gamage RN BSN CIC
Director, Programs & Projects
CHICA-Canada Research Fund

Application:

Project Title

Date of Application

Name of Principal Investigator

CHICA Member #

Phone Number

Email Address

Name of Co-Investigator(s)

Name of Employer or Institution where research will take place

Mailing Address

Please check appropriate box.

Ethics Approval Required: ☐ Animal ☐ Human ☐ Not Applicable

I, the undersigned, certify that the statements in this proposal are true and complete to the best of my knowledge and accept, if a grant is awarded, the obligation to comply with the terms and conditions in effect at the time of the award.

Signature

Date

Please contact the Director of Programs and Projects (Bruce Gamage at 604-660-6076 or bruce.gamage@bccdc.ca) with any questions.

Application Guidelines

1. This form is to be completed by individuals requesting support from the CHICA-Canada research fund.
2. Research grants are for studies designed to demonstrate the value and improve the practice of infection prevention and control in all health care delivery settings.
3. Use of the CHICA-Canada research fund will be restricted to members of CHICA-Canada in good standing.
4. A maximum of $50,000 is available for research awards. Distribution of those funds will be based on the number of successful applicants and the merit of the proposals received.
5. Funds are granted for research studies to be completed and published within 2 years. A progress report will be required to be submitted to the Director of Programs and Projects at the end of the first year.
6. A letter of support from the agency where the research will take place should accompany the proposal.
7. A notice of approval from a Research Ethics Board should accompany the proposal if applicable.
8. Competitions will be once a year. The applications deadline is September 1 (must arrive by midnight on September 1), any Year. Submit completed applications to CHICA-Canada Research Fund, c/o CHICA-Canada MSO, PO Box 46125, RPO Westdale, Winnipeg MB R3R 3S3. chicacanada@mts.net. Please submit 3 paper copies and an electronic version.
9. The Director of Programs and Projects will appoint a committee to review all applications. The Principal Investigator (or Co-Investigator) will be given two weeks to respond to questions on the grant submission from the review committee. Responses to questions may be done by electronic or paper mail. A final decision on funding a project will be made by the CHICA-Canada Board. Successful applicants will be notified through a letter from the Director of Programs and Projects by December 1. As per the decision of the Board, a part or none of the funds may be distributed.
10. Successful applicants are required to submit a report to the CHICA Board on completion of the project and to submit an abstract on the results at the CHICA-Canada National Conference and an article to the Canadian Journal of Infection Control.

Applicants should prepare a written proposal that includes the following sections. Proposals should be a maximum of 10 pages (typed and double spaced, using a minimum 12 point font), excluding references and résumés and appendices.

Background and Significance:

Describe the current state of knowledge and significance of the topic. State concisely the importance and relevance of the research described in this application by relating the specific aims and objectives.

Objectives:

List the broad, long term objectives of this work and the specific aims of this project. Be clear in the specific aims and state what the specific research proposed in this application is intended to accomplish.

Research Design and Methods:

Describe the research design and procedures to be used to accomplish the specific aims of the project. Include study design, target population and sample, instruments and data collection tools, procedures for collecting and managing data and data analysis and interpretation.

Timeline:

Present and outline of the sequence of planned research tasks along with an estimated duration for each task. Give proposed start date and completion date for the project.

Budget:

Provide a realistic budget, including cost estimates for supplies, services and other direct costs. Describe the rationale for why funding support is needed from this source. Mention any constraints in obtaining this support from other sources. If the project will be partially funded by another grant or by the institution this should be specified.

References:

All references listed should be cited in the body of the research plan.

Résumés:

Résumés of the principal and co-investigators should be included. Maximum 2 pages for each person.
The 5 Ws of Infection Control

Who? you and your staff

What? creating splatter & risking cross contamination

Where? in the patient’s toilet or sink

When? NEVER AGAIN!

Why? you use an ARJO flusher disinfecter

Empty. Flush. Clean. Disinfect. All with the touch of a button.

Reduce the risk of nosocomial infections while increasing clinical efficacy with ARJO flusher disinfectors.

Our revolutionary technology allows you to spend more time and effort on patient care and less time with housekeeping.

For more information, call 800-665-4831 or visit us online at www.arjo.com.
Membership and Expert Resource Information

Please complete all applicable sections. This information will provide accurate demographics for our Association and assist in our planning for the future. It also provides a resource of experts in the field of Infection Control, Epidemiology and associated disciplines.

Membership Categories

Please check one (see reverse for category definitions):

ACTIVE - $100  □ Renewal  □ New Member
INSTITUTIONAL $150  □ Renewal  □ New Member
STUDENT - $50  □ Renewal  □ New Member
ASSOCIATE - $100  □ Renewal  □ New Member
SILVER/RETIRED - $50  □ Renewal  □ New Member

I am replacing the following CHICA-Canada Member:

This section to be completed only by new members or if information has changed since last application.

Name: ___________________________  Academic Designations: ___________________________
Position: ___________________________
Place of Employment: ___________________________
Address of Employer: ___________________________  Street Address: ___________________________
Office Tel: (____)_____________  Extension: ______  Office Fax: (____)_____________
Email: ___________________________  Send information to my:  □ Office  □ Home address (below)

The employment information given above will be included in the CHICA-Canada Membership Directory. If you do not wish to have your information printed in the Directory, advise the Membership Services Office in writing by December 31st each year.

Home Address (optional) ___________________________  Street Address: ___________________________
Home Tel (optional): (____)_____________  (please list if no employer listed above, for contact info only)

DISCIPLINE:  □ RN  □ Microbiologist  □ MD  □ Technologist  □ Other
EDUCATION:  □ Diploma  □ Bachelor  □ Master  □ Doctorate  □ Other
CERTIFICATION:  □ CIC - Year of Exam ___________  □ Other
INSTITUTION:  □ Hospital  □ Long Term Care  □ Community Health  □ Industry  □ Other
# OF BEDS:  □ 1 to 99  □ 100 to 249  □ 250 to 499  □ 500 to 699  □ 700 to 999  □ 1000 or more  □ N/A
COMMUNICATION:  □ English  □ French

Chapter Membership

Chapter membership is not compulsory for membership in CHICA-Canada; however, Chapter members must be members of CHICA national (CHICA-Canada Policy 6.60). There are 19 local Chapters of CHICA-Canada (see list below). Membership in your local Chapter provides invaluable networking, education and communication opportunities. Individual Chapter Membership Fees (see below) will be collected at the national level, and should be remitted with this application. To contact your nearest chapter, a list of Chapter Presidents is available online at www.chica.org.

□ I am a member of ________ Chapter  □ I am not a member of a local Chapter. Please send me more information

*Newfoundland and Labrador - $20.00  *New Brunswick/P.E.I. - $20.00  *Newfoundland/P.E.I.
*Infection Control Association of Nova Scotia (ICANS) - $20.00  *Eastern Ontario Professionals in Infection Control (EOPIC) - $20.00  *Renfrew County Organization for Professionals in Infection Prevention and Control (RCOPIC) - $20.00  *Central Ontario Professionals of Infection Control (COPIC) - $20.00

*Northern Ontario Professionals in Infection Control (NWPIC) - $30.00  *Toronto and Area Professionals in Infection Control (TPIC) - $30 (after January 31)  *Hamilton and Neighbouring Districts Infection Control Group (HANDIC) - $20.00  *Northern Alberta Professionals in Infection Control (NAPIC) - $20.00

*Ottawa Organization for Professionals in Infection Control (OOPIC) - $20.00  *Southern Ontario Professionals in Infection Control (SOPIC) - $25.00  *Saskatchewan Professionals in Infection Control (SASKPIC) - $15.00  *British Columbia Professionals in Infection Control (BCPIC) - $20.00

*Ontario Chapter - $15.00  *Saskatchewan Chapter - $15.00  *British Columbia Chapter - $15.00  *Vancouver Island Chapter - $20.00

Please forward this completed form, with payment to:
CHICA-Canada PO Box 46125 RPO Westdale, Winnipeg MB R3J 3S3
Tel: 204-897-5990/886-999-7111  Fax: 204-895-9595  Email: chicacanada@mts.net
Business Number 11883 3201 RT0001
2005 Membership Application and Payment Verification

Enjoy the many benefits of CHICA-Canada Membership

**Membership Benefits**
- Subscription to The Canadian Journal of Infection Control
- Annual Membership Directory
- Professional exchange of ideas
- Access to CBIC certification
- Local Chapter activities and support
- Development of infection control standards
- Reduced registration fees for annual conference and other education offerings
- Access to Members Only section of website, www.chica.org
- Push emails, providing timely infection control updates

**Membership Categories**
- **Active/Professional:** Individuals occupationally or professionally involved in the practice of Infection Control or Epidemiology. May vote, hold office and serve on committees.
- **Associate/Business:** Industry representatives: as well as those not actively involved in the practice of infection control and/or epidemiology. May not vote or hold elected office.
- **Institutional:** Health care related institutions or agencies interested in fostering the purposes and objectives of the Association.
- **Student:** Full-time student attending an infection control related program. May not vote or hold elected office. Applications for Student membership must be accompanied by a letter of attestation that you are a full-time student attending an infection control related program.
- **Silver Membership - Retired:** Neither employed nor seeking employment. May not vote or hold elected office.

The membership year is the calendar year, January 1st to December 31st of the same year. New membership application and dues received prior to November 1st are effective immediately and expire December 31st of the same year. Those received after November 1st are effective immediately and expire on December 31st the following year. Memberships are transferable during the membership year with a $25.00 administrative fee. Fee will not be refunded after 30 days of receipt. There will be a $15.00 charge for all returned cheques. Payment must accompany application. No post-dated cheques.

**Section 1: APPLICATION FOR CHAPTER MEMBERSHIP**
- For your nearest Chapter, see reverse

I am a member of/I am joining ___________________________ Chapter: __________ Chapter Fee $________ (Sub Total A)

**Section 2: APPLICATION FOR INDIVIDUAL MEMBERSHIP**
- Active, Associate or Student

Individual Membership fees: $100.00 (CAD$) or Retired or Student fees $50.00 $________ (Sub Total B)

**Section 3: APPLICATION FOR INSTITUTIONAL MEMBERSHIP**
- Active or Associate

This category will be beneficial to those agencies which have two or more representatives in the Association and/or a turnover of representatives in any calendar year. An "institution" is defined as one physical site with representatives to the Association employed at that site. If any agency has more than one physical location throughout the province or the nation, each site would be designated an "institution" for purposes of membership.

An annual fee of $150.00 for the first representative of the institution and an annual fee of $50.00 for each additional representative from the institution. If one representative leaves during the calendar year and the institution names another representative, the $50.00 fee would again apply and the previous membership would be cancelled. **At least one representative must be named.**

Additional representatives: List on a separate page and return a completed Membership Application Form for each name on the list.

Facility/Agency ___________________________ First Representative: ___________________________

Address: ___________________________ Street: ___________________________

City: ___________________________ Prov/State: ___________________________ Code: ___________________________

Tel: ( ) __________ Fax: ( ) __________ Email: ___________________________

Institutional Membership fees: $150.00 Institutional Fee: $________

Additional Representatives: $50.00 each x ______ = Additional Reps: $________

Total Institutional Membership Fee: $________ (Sub Total C)

**Section 4: TOTAL MEMBERSHIP FEES DUE**

Sub Total of Membership Fees (from sections 1 through 3, above) $________ (Sub Total D)

Enclosed is my additional donation to CHICA-Canada in the amount of $________ (Sub Total E)

TOTAL AMOUNT ENCLOSED: $________ (TOTAL F)

☐ Please charge my VISA or MASTERCARD. Card Number: ______________ Expiry Date: __________ /

Cardholder’s Name (please print): ___________________________ Cardholder’s Signature: ___________________________
Adacel

Tetanus and Diphtheria Toxoids Adsorbed Conjugate with Component Pertussis Vaccine
For Active Immunization against Tetanus, Diphtheria and Whooping Cough

Dosage Form
- 0.5 mL

INDICATIONS AND CLINICAL USAGE

**ADACEL** [Tetanus and Diphtheria Toxoids Adsorbed Conjugate with Component Pertussis Vaccine] is indicated for active immunization against tetanus, diphtheria and whooping cough for persons aged 11 to 59 years. ADACEL may be administered concurrently with a dose of Hepatitis B vaccine in 1 and 12 year-olds at separate sites with separate syringes. Because simultaneous administration of ADACEL with other vaccines, the possible effects of concomitant use of ADACEL and other vaccines should be considered. ADACEL may be administered simultaneously with other inactivated and live vaccines at different sites.

**CONTRAINDICATIONS**

- Anaphylactic or anaphylactoid reaction to any component of ADACEL.

**WARNINGS**

- Infections with toxoids of ADACEL is not a component of the vaccine. There is no evidence that ADACEL contains any substances that could be responsible for anaphylaxis or anaphylactoid reactions.

**PRECAUTIONS**

- History of anaphylactic or anaphylactoid reactions to any component of ADACEL should be considered a contraindication.

**ADVERSE REACTIONS**

- Local and Systemic Reactions: Local Reactions: redness, pain, swelling, and tenderness may be observed at the injection site. Systemic Reactions: fever, irritability, drowsiness, diarrhea, vomiting, and rash may occur. ADACEL is not associated with severe adverse reactions.

**STABILITY AND STORAGE**

Store at 2°C to 8°C (36°F to 46°F); do not freeze. Discard product if frozen or thawed. Do not use after expiration date.

**AVAILABILITY OF DOSAGE FORMS**

**ADACEL** 1.0 mL (Single Dose) 1.0 mL (5 Dose Box)

**REFERENCES**

3. The Institute of Medicine, Committee on Immunization for Children, 2001; W.B. Saunders, Philadelphia, Pa.

**SANOFI PASTEUR**

Sanofi Pasteur is a division of Sanofi-Aventis Canada Inc., a global pharmaceutical company with a broad range of products in human and animal health.

Vaccine Information Service: 1-888-321-4L97 (4L97) 1-888-321-4L97 (4L97)

Full Product Monograph available in report.

Product information as at September 2004.

Manufactured by:

Sanofi Pasteur Limited

1750 Avenue D

Montreal, Quebec, Canada H3W 5C4

©2004 Sanofi Pasteur Limited

Formerly known as Aventis Pasteur Limited

ISSN 0000-104X (2004-01-01)
Concerned about nosocomial infections?
Put your mind at ease.

The extra 60 seconds it takes to check the effectiveness of your glut solution prior to each use is vitally important to reducing hospital-related infections that occur each year. As important is the reliability and efficiency of the precleaners and sterilants you use. MetriCide® with its 20+ year history is a tried and true formula recommended specifically for high-level disinfecting and sterilizing scopes and other delicate instruments. To find out more about Metrex products, call 800.841.1428 or visit www.metrex.com.

A Complete Product Line for Reprocessing

Metrex offers powerful dual-enzymatic detergents and sponges for quick removal of debris. MetriCide is specifically recommended for scopes. Reusable up to 14 days. No dilution required. MetriTest™ is recommended prior to each use.

Put your mind at ease by testing MetriCide using MetriTest strips

Saturated with MetriZyme® dual-enzymatic detergent, MetriSponge® has a specially contoured shape to preclean scopes and other delicate instruments.
The Board of Directors of CHICA-Canada is seeking nominations for Board positions in 2006. Being on the Board of CHICA-Canada is an excellent way to participate at the national level. Personally and professionally, it offers you the opportunity to meet a wide range of CHICA-Canada members, network with allied professional groups, and work with other motivated and experienced Board members.

Nominations are invited for the following positions:

- **President Elect** (1 year term)
- **Director of Finance** (3 year term)
- **Physician Director** (3 year term)

These terms commence January 1, 2006. Position descriptions and nomination forms are found in the CHICA-Canada Policy and Procedure Manual or may be obtained from the Membership Services Office or downloaded from www.chica.org.

Signatures of two active members are needed for each nomination. If you know someone who would be qualified and interested in one of the above positions, send a completed nomination form to:

Pearl Orenstein, RN, BA, DIA, CIC  
CHICA-Canada Secretary/Membership Director  
c/o Membership Services Office  
PO Box 46125 RPO Westdale  
Winnipeg, MB    R3R 3S3

**Deadline for nominations is August 15, 2005**
Case study on construction infection control

Active Blood and Marrow Transplant Unit, Health Sciences Centre — Winnipeg, MB

By Vince D’Angiolo CET. Pinchen Environmental Ltd., Winnipeg.

The first of its kind in Canada and possibly North America, the Construction Infection Control Project was completed within a nursing station serving an active Blood and Marrow Transplant (BMT) Unit at the Health Sciences Centre (HSC) in Winnipeg, Manitoba while it remained fully operational. Pinchin Environmental Ltd. acted as the infection control consultant and through a team approach with HSC’s Maintenance Services Department, Infection Control Department, unit staff and Winnipeg Regional Health Authority, was successful in renovating the station whilst patient care in the BMT unit continued.

The unit serves patients receiving blood and marrow transplants and other organ related treatments. In most cases their immune systems are artificially suppressed. These patients are at a greater risk of developing nosocomial infection compared to most other patients; therefore any activities resulting in the generation of dust must be carefully monitored. Particulate generated during construction or renovation activities can contain mould known as *Aspergillus*.

As nosocomial aspergillosis is often associated with construction activities, isolation of the work area and monitoring activities become key components of construction in these and similar areas.

Numerous published reports have linked construction activities in hospitals to outbreaks of aspergillosis which have had fatal outcomes to multiple patients.

The BMT unit’s nursing station was in need of an upgrade, which required demolitions, new construction as well as electrical and mechanical upgrades. In reference to the CSA Guideline Z317.13-03 “Infection Control during Construction or Renovation of Health Care Facilities” and Health Canada’s document titled, “Construction-related Nosocomial Infections in Health Care Facilities,” the construction work was classified as a Type D activity, which required Class IV procedures and precautions to protect the patients classified as a Group 4 (highest risk) population.

Prior to the start of any dust-generating activities, baseline air samples were collected. These included measurements for airborne particulates and mould respectively by use of a portable aerosol monitor and an N6 multi-hole impactor, high flow pump and suitable growth media. The analysis of mould air samples identified the total concentrations and mould species by culturing of viable spores.

The samples were analyzed at the Pinchin Environmental Microbiology Laboratory, in Mississauga. The laboratory is accredited for culture and direct microscope fungal analysis by the American Industrial Hygiene Association (AIHA) Environmental Microbiology Laboratory Accreditation Program and participates in the AIHA Environmental Microbiology Proficiency Analytical Testing Program.

Each sample was cultured for five days after which colonies were counted. Representative colonies were then transferred to secondary media and then incubated for seven to 10 days after which they are identified to the genus or species level based upon current fungal taxonomic keys. Upon receipt of the laboratory report, the results were interpreted and made available to HSC.

Based on the above published standards, Pinchin developed site specific procedures for the isolation of the construction area and inspected all phases of the work until completion.

The construction portion of the work was performed by the HSC In-House team and was completed over a six-week period. Pinchin provided on-site training and advice to the HSC team on establishing containment and minimizing particulate generation during performance of the work. BMT unit staff and HSC’s Infection Control department also provided valuable input and were kept informed on all phases of the project.

Containment included installation of slab-to-slab hoarding walls to isolate the work area, negative air pressure to 0.035 inches water column in the work area relative to adjoining patient areas and isolation of the HVAC system. To assist in evaluating the effectiveness of the containment during the construction phase, particulate measurements, with instantaneous results, were collected on a daily basis within the construction area, the active BMT unit (both inside and outside of patient care rooms), and outside the BMT unit. Pinchin’s findings indicated that concentrations measured outside of the construction area remained similar to those of the baseline measurements. Mould air samples for viable spore analysis were collected on a weekly basis in the same locations as those of the particulate measurements. Analytical results of the mould samples did not identify any *Aspergillus* in the patient care rooms. The total concentrations of mould within the occupied BMT unit were similar to that of the baseline measurements. The controls and procedures implemented (hoarding walls, HVAC isolation, negative pressure, etc.) was found to be effective in minimizing the risk of nosocomial infection by containment and prevention of particulate from the construction area migrating into the high risk patient area.

The team approach of developing infection control strategies, inspecting the construction area during all project phases, combined with air monitoring...
(particulate and airborne mould) ensured and demonstrated the success of this project. This approach is becoming widely recognized as necessary in all health care construction. It is the standard expected of construction when hospitals remain operational during renovations.

Vince D’Angiolo CET, is a Senior Project Manager with Pinchin Environmental Ltd. For additional information call 204-452-0983 or write vangiolo@pinchin.com
2006 NATIONAL EDUCATION CONFERENCE
“BRIDGING GLOBAL PARTNERSHIPS”
London, Ontario – May 6-10, 2006

--- 2006 Conference ---

**Conference Chair**
Margie Foster RN CIC
Director, Infection Control
Grand River Hospital KWHC
Kitchener ON

**Scientific Program Chair**
Debby Kenny RN COHN(C)
Regional Mental Health Care - London
London ON

--- Conference Planner ---
Gerry Hansen BA, CHICA-Canada
Kelli Wagner, Conference Assistant

--- Scientific Program Committee ---

**2006 Conference Chair**
Margie Foster RN CIC
Grand River Hospital
Kitchener ON

**2006 Scientific Program Chair**
Debby Kenny RN COHN(C)
Regional Mental Health Care - London
London ON

**2006 Scientific Program Committee**
Nora Boyd RN MEd CIC
Bluewater Health
Sarnia ON

Yvonne Richardson RN
Strathroy Middlesex General Hospital
Four Counties Health Services
Middlesex Hospital Alliance
Strathroy ON

Leesa Round BA(Hon) RN CIC
St. Joseph’s Health Care Centre
London ON

Michael John MSc MB ChB FRCPCH
London Health Sciences Centre
London ON

Joanne Dow RN BScN
Middlesex-London Health Unit
London ON

CHICA-Canada Conference Planning Office
Gerry Hansen BA, Conference Planner
Kelli Wagner, Secretarial Support
Registration Fees (Plus GST – 118833201RT0001)

<table>
<thead>
<tr>
<th>To April 17</th>
<th>Member</th>
<th>Non-Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novice ICP Day</td>
<td>$50.00</td>
<td>$75.00</td>
</tr>
<tr>
<td>PreConference – Half Day</td>
<td>$75.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>PreConference – Full Day</td>
<td>$100.00</td>
<td>$150.00</td>
</tr>
<tr>
<td>Conference, not including PreConference Day or novice</td>
<td>$350.00</td>
<td>$450.00</td>
</tr>
<tr>
<td>Daily, not including PreConference Day, each day</td>
<td>$150.00</td>
<td>$200.00</td>
</tr>
<tr>
<td>Student, Daily, each day*</td>
<td>$75.00</td>
<td>$75.00</td>
</tr>
<tr>
<td>Silver¹, Daily, each day</td>
<td>$75.00</td>
<td>$75.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>After April 17</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Novice ICP Day</td>
<td>$50.00</td>
<td>$75.00</td>
</tr>
<tr>
<td>PreConference – Half Day</td>
<td>$100.00</td>
<td>$150.00</td>
</tr>
<tr>
<td>PreConference – Full Day</td>
<td>$200.00</td>
<td>$300.00</td>
</tr>
<tr>
<td>Conference, not including PreConference Day or novice</td>
<td>$450.00</td>
<td>$600.00</td>
</tr>
<tr>
<td>Daily, not including PreConference Day, each day</td>
<td>$200.00</td>
<td>$300.00</td>
</tr>
<tr>
<td>Student, Daily, each day*</td>
<td>$75.00</td>
<td>$75.00</td>
</tr>
<tr>
<td>Silver¹, Daily, each day</td>
<td>$75.00</td>
<td>$75.00</td>
</tr>
</tbody>
</table>

*Registration must be accompanied by a letter of attestation by the teaching institution that the applicant is a full time student in a field related to infection control.

¹ Retired and not seeking employment in infection control.

Cancellation Policy

Cancellation request must be submitted in writing. Those received by March 17, 2006 – 70% refund; those received by April 7, 2006 – 50% refund; those received after April 7, 2006 cannot be refunded. Registrations may be transferred at any time without penalty.

Conference Hotel

Hilton London
300 King Street
London ON N6B 1S2
Website: http://www.londonontario.hilton.com

Telephone: 1-800-210-9336 or 1-519-439-1661 or – 1-800-HILTONS (445-8667)

Room Rate: $149.00 single/double (plus 12% taxes)

Deadline for reservations: April 3, 2006
CALL FOR ABSTRACTS

Deadline for submission: January 27, 2006

Abstracts for presentation at the 2006 National Education Conference of the Community and Hospital Infection Control Association Canada will be accepted until the close of business January 27, 2006. The Abstract Committee reserves the right to select papers for presentation on the basis of relevance and interest, and to choose the types of presentation.

Abstract Preparation and Guidelines for Acceptance

A. Content
1. Abstracts should be based on results that have not or will not be published or presented before the meeting date.
2. The potential significance of the observations, as well as the scientific and/or educational quality of the work will influence which abstracts are accepted. Where possible, the author(s) should emphasize the features of the project that are new or different.
3. All concepts and abbreviations must be defined at first use in the body of the abstract.
4. Any corporate assistance must be acknowledged.
5. Any sources of funding must be acknowledged.

B. Format
Abstracts should be submitted in one of the following formats:

Format 1: This format is intended for abstracts involving the presentation of scientific research findings, such as those involving randomized clinical trials, case-control, observational or descriptive studies, or outbreak investigations where appropriate comparisons or analysis of data has been performed.

NOTE: The abstract should disclose primary findings and not include statements such as "experiment in progress" or "results will be discussed."

Abstract Title: (CAPITAL LETTERS)
Authors: The presenter must be denoted with an asterisk, e.g.: Rivers, T*, General Hospital, London, Ontario
Background/Objectives: Outline study objectives, the hypothesis to be tested, or description of the problem.
Methods: Report methods used or approach taken.
Results: Indicate essential results obtained in summary form with appropriate statistical analysis (p value, confidence intervals, odds ratio, etc.)
Conclusions: Provide a summary of findings as supported by results with implications and conclusions.

Format 2: The format is intended for abstracts involving the description of educational or performance improvement programs, observations, or other infection prevention activities, including descriptions of facility or community-based programs or interventions, discussions or infection prevention policy, and descriptions of a particular prevention model or method.

Abstract Title: (CAPITAL LETTERS)
Authors: (The presenter must be denoted with an asterisk, e.g. Sauvignon, C*, Shakespeare, W, General Hospital, London, Ontario
Issue: Identify the specific problems or needs addressed.
Provide brief introduction of the proposed topic. Include important background and current information on issues.
Project: Description of the intervention/program
Results: Specific results in summary form.
Lessons Learned: Summary of the lessons learned and implications.

C. Major Interest (select one)
☐ Clinical Infectious Diseases
☐ Infection Prevention and Control

D. Subject Categories (select only one)
The author(s) should select the one subject category that best categorizes the submissions. This will assist conference planners in organizing the program. If the presenting author prefers a poster presentation, that preference must be indicated at the time of submission.

☐ Antimicrobial Resistance
☐ Ambulatory Care
☐ Antisepsis/Disinfection/Sterilization
☐ Cost Effectiveness
☐ Device Related Infections
☐ Emerging Pathogens
☐ HIV/AIDS/Hepatitis
☐ Home Care
☐ Infection Control Programs
☐ Infections in the Immunocompromised host
☐ Long-term care
☐ Molecular Epidemiology
☐ Occupational Health
☐ Outbreak Investigation
☐ Pediatrics
☐ Product Evaluation
☐ Quality/Process Improvement/Adverse Events
☐ Surveillance
☐ Site Specific Infections (SSI, Pneumonia, UTI, Bloodstream)
☐ Tuberculosis
☐ Other

E. Preferred method of Presentation if abstract selected (select one only)
☐ Poster
☐ Oral presentation
☐ No preference

F. Guidelines for Abstract Selection
Abstracts not meeting the stipulations outlined under both A (Content) and B (Format) above will not be considered for acceptance.

Submission of Abstracts

1. Emailed submissions are preferred. The file must be compatible with Word or WordPerfect for Windows. Email to chicacanada@mts.net.
3. Abstracts must be postmarked or received by email by January 27, 2006.
4. Abstracts should be typed single spaced, of a finished size not more than 7" w x 6" h. Do not include borders in your submitted abstract. Indent the body of the abstract five spaces. Use no less than 10 and no more than 12 characters per inch.
5. Abstracts will be reproduced and submitted for inclusion in the pre-conference issue of the Canadian Journal of Infection Control. Presenters must be registered at the conference.
6. Include the following information with the abstract:
   • Full name, professional mailing address, telephone and email address of the author who will present the paper.
   • Preference: Oral Presentation, Poster Presentation, or No Preference
   • Indicate if the presenter is a First-time Presenter.
   • Indicate if the authors are interested in authoring an article for publication in either journal.
Those of us in the field have known for years that infection control should be playing in the major leagues, but obviously this fact has not been apparent to all. A few years ago, during SARS, government, administration and the public started to see the light. But that trip to the majors was not sustained. Now Patient Safety (PS) has come along, again bringing infection control to the big leagues. Is this finally our ticket to a long and glorious career in the sun, or is PS just a passing fling?

Check out the past year. Last May in Canada, PS got some publicity with the publication of the Canadian adverse events study (1). In a review of 3,745 charts from 20 hospitals, 7.5% of patients were found to have suffered an adverse event, defined as unintended injury or complication resulting in disability at the time of discharge, death, or prolonged hospital stay, unrelated to the primary diagnosis. Of those adverse events, 37% were deemed preventable. Hospital acquired infection or sepsis was the third most common criterion used to identify adverse events associated with hospitalization.

Next, the Canadian Council on Health Services Accreditation let PS score some goals with release of the 2005 PS Goals and Required Organizational Practices (ROPs). These goals and ROPs came into effect and will be recognized as part of the accreditation process starting in 2006. The sixth of six PS goals is to reduce the incidence of healthcare acquired infections through:

- Adherence to provincial or federal infection control guidelines and recommendations,
- Education of hospital staff, other providers, and volunteers around hand hygiene,
- Monitoring infection rates across the organization and sharing them with staff, and
- Examining and where indicated improving processes for sterilization and disinfection of medical equipment.

In Canada, the latest acknowledgement of the integral relationship between PS and Infection Control has come with the launching of the ‘Canadian Safer Healthcare Now!’ (www.saferhealthcarenow.ca) campaign. Mirroring the American 100,000 Lives campaign, Safer Healthcare Now! aims to reduce the incidence of preventable mortality by application of evidence based practices in six key areas. Three of the six interventions being targeted are infection control related, including:

- Preventing central line infections
- Preventing surgical site infections
- Preventing ventilator-associated pneumonia.

(Outcome in this campaign is optional.)

The accreditation process is perhaps our strongest weapon. In the US, many states require hospital accreditation through the Joint Commission on Accreditation of Healthcare Organizations (JCAHO) in order for the hospital to be licensed, while hospitals not regulated by this legislation go through the process for other reasons, including demonstrating their commitment to quality and safety and thereby improving patient care.

In Canada, hospital accreditation is optional, and is done for many reasons, including those cited above.

For 2005, one of JCAHO’s National Patient Safety Goals is to reduce the risk of health care-associated infections, by the following interventions: Complying with current Centers for Disease Control and Prevention (CDC) hand hygiene guidelines, and by managing as sentinel events all identified cases of unanticipated death or major permanent loss of function associated with a health care-associated infection.

Recently, the following question regarding the survey process for hand hygiene compliance was posted on JCAHO’s website (www.jcipatientsafety.org).

**Question:** How will this "hand hygiene" requirement (7a) be surveyed and scored?

**Answer:** Compliance with the "CDC guidelines" requirement will be surveyed through interviews with caregiver staff and direct observation. Caregivers should know what is expected of them with regard to hand hygiene and should practice it consistently.

- A minimum of 90% compliance will be expected.
- Surveyors will score by counting observations.
- One occurrence equals one observation of non-compliance with CDC category I recommendations.
- Three occurrences equal a Requirement for Improvement.

A colleague in the US has shared her experience with a recent JCAHO accreditation. The surveyors go to the wards and ask the staff: “when is it acceptable to use foam?” or “can you use foam all the time?” To be able to answer the question, it is clear that the staff need to be educated. To do so, there must be a two pronged institutional commitment to infection control: allocation of resources (time and money) to both teaching and learning.

It is just the beginning. We may yet sit some games out on the bench, but there is no doubt that in everyone’s eyes, infection control has the ability to pitch a perfect game. Certainly, it’s better to be playing in the big leagues, and as they say, it’s never over till it’s over.
2005 Conference Award and Prize winners

Early Bird Draw
Complimentary 2006 Conference registration
– Stephanie Trowbridge, Ontario

Exhibit Passport Winners
Digital Camera – Linda Heimbach, Yukon Territories
MP3 – Gwen Connor, Manitoba

Strut Your Stuff! Breakfast
Complimentary 2006 Membership
– Berlee Penny, New Brunswick

Conference Evaluation Draw
Complimentary 2006 Conference Registration
– Pam Siddall, Ontario

2006 – 30th Anniversary Logo
Co-winners Pamela Armstrong, Alberta and Bill Walker, British Columbia each receive a complimentary 2006 Conference Registration.

2005 Poster Contest, sponsored by Ecolab
– Lori Jessome, Nova Scotia

3M Chapter Achievement Award
– CHICA-Canada – Southern Alberta

CBIC Chapter Achievement Award
– CHICA-Canada – Southern Alberta

Southern Alberta Chapter
– Dual winners in Winnipeg! CHICA-Canada
– Southern Alberta has won two major chapter achievement awards. The 3M Chapter Achievement Award is a $1,500 award for an educational project presented to the chapter which has best demonstrated significant chapter activities in education, membership recruitment and retention, and networking. The Certification Board of Infection Control presents an annual Chapter Achievement Award to a Canadian chapter of CHICA-Canada that promotes certification and demonstrates an increase in certification of members. The prize is a plaque from CBIC and a cash award. The members of CHICA-Canada – Southern Alberta have had an exciting year with many projects centred on education and promotion of infection prevention and control. Noteworthy was their hosting of the 2004 Conjoint Conference in Calgary.

Awards of Merit presented in Winnipeg

Awards of Merit were presented to Ilana Warner (left) and Brenda Dyck (right) for their support in the development of the ARO video: Across the Spectrum of Care. Answering a nation-wide call for assistance from Bruce Gamage, Director of Programs and Projects, Ilana and Brenda assisted in the development and production of the video, which was sponsored by Wyeth Ayerst. A complimentary copy of the video was sent to all 2004 CHICA-Canada members. Additional copies are available from CHICA-Canada at $25.00 each (plus s&h, plus GST).
Another exceptional CHICA-Canada trade show.
Guests enjoyed an evening of cultural entertainment from Winnipeg’s Folk Arts Council and even learned a few dance steps!
Lori Jessome of Halifax, Nova Scotia has won the 2005 Poster Contest with her submission themed “Infection Control Professionals – Partners in Prevention.” The winning poster was unveiled at the Opening Ceremonies of the 2005 National Education Conference in Winnipeg. The 2005 contest was hosted by the Hamilton and Neighbourhood Districts Infection Control Group (HANDIC) Chapter of CHICA-Canada and sponsored by Ecolab Healthcare.

The 2005 poster is available for downloading from www.chica.org (Members Only).

The 2006 Poster Contest will be hosted by the Toronto Professionals in Infection Control (TPIC) and sponsored by Ecolab Healthcare. Watch for an announcement of the 2006 Poster Contest in the fall 2005 issue.
Flexi-Seal® FMS is an effective fecal diversion and containment system designed to reduce the risk of skin breakdown and spread of infection due to fecal containment both of which can extend the length of hospital stay.¹

Created by ConvaTec, a Bristol-Myers Squibb Company with a long history of developing innovative skin, wound, and ostomy products that respond to the needs of the caregiver and patient alike.

Please see package insert for full product information, including instructions for use.


©2005 E.R. Squibb & Sons, L.L.C.
INDUSTRY NEWS

**gelFAST: increasing hand hygiene compliance**

Gelfast is a wearable dispenser of antiseptic alcohol gel, designed from the ground up for one purpose only: to improve hand hygiene frequency among Health Care Workers (HCWs).

The importance of increased hand hygiene among HCWs is widely recognized, but numerous studies have concluded that HCWs disinfect hands on average 40% as often as required. Because Gelfast is worn on the body and ergonomically designed, hand hygiene is made very convenient and always accessible, and a consistent habit of frequent handwashing quickly develops.

Developed by a team of designers, physicians, and scientists as a way to equip caregivers with the tools they need, Gelfast was designed to create a strong habit of hand hygiene, removing systemic barriers to clean hands and a safer hospital environment.

Gelfast cartridges contain 50ml of 70% ethyl alcohol gel with emollients. The gel product is clear and unscented. Each disposable Gelfast cartridge was designed to last even the most intense user a full shift.

Increased hand hygiene compliance rates are associated with reduced infection rates, and trials have shown that Gelfast’s ergonomic design allows near-instant initiation of hand hygiene, facilitating the development of instinctive handwashing habits and increased compliance rates.

Medonyx of Toronto, Ontario introduced Gelfast at this year’s CHICA-Canada conference in Winnipeg. Gelfast won gold in Canada’s top product design competition, the National Post Design Exchange Award 2004. For more information visit the Medonyx website at [www.medonyx.com](http://www.medonyx.com) or call 866-633-6699.

**Convatec launches fecal incontinence management system**

Convatec introduced its new Flexi-Seal Fecal Management System (FMS) for patients with episodic fecal incontinence at this year’s CHICA-Canada conference.

Flexi-Seal FMS, a new advanced alternative to more traditional diversion and containment, is designed to improve fecal incontinence management. The system is indicated for patients with liquid to semi-liquid stool.

Ineffective fecal incontinence management can lead to serious skin breakdown, which can increase a patient’s per hospital stay an average of four days. Resulting hospital-acquired infection may result in an added cost of nearly $39,000 USD. Ineffective fecal incontinence management is reportedly associated with high incidence of dermatitis and ulceration. More traditional fecal incontinence management systems can demand up to 50% of an Intensive Care Unit (ICU) nurse’s patient care time.

“The Flexi-Seal® FMS is designed to reduce the risks of skin breakdown and the spread of infection related to fecal incontinence,” says Franco Di Clemente, Convatec Senior Product Manager. “In addition, Flexi-Seal FMS protects wounds, surgical sites and burns through the containment of fecal matter, helping to reduce the risk of complications that can extend the length of a patient’s hospital stay. This system is designed to improve patient comfort, restore patient dignity and reduce the cost of managing fecal incontinence.”

Flexi-Seal® Fecal Management System contains a soft silicone catheter assembly. The soft catheter is inserted into the rectum and retained using a low pressure retention balloon. The unit then diverts and contains fecal waste, protecting the patient’s skin, to help decrease the risk of skin breakdown and infection from fecal matter.

For more information about Convatec and Flexi-Seal visit the company’s web site at [www.convatec.com](http://www.convatec.com).
MULTI-PURPOSE

EQUIPMENT WASHER

You too can reduce bacteria by 99.9%
As demonstrated in an independent laboratory study

- 5 Minutes Per Cycle
- All Stainless Steel
- Portable
- Washes Two Wheelchairs At A Time
- Direct from Factory

OVER 1100 WASHERS NOW IN USE!

Washes Two Wheelchairs At A Time

FREE
NO OBLIGATION TRIAL!

CALL US TOLL FREE 800-717-3626
www.medcoequipment.com

MEDCO EQUIPMENT, INC.
Manufacturers of Industrial Washers
Made in U.S.A. Since 1954
Strike the perfect balance with Endure 320 Advanced Care. This new alcohol-based hand rinse is fast and effective at killing germs, plus contains advanced moisturizers and conditioners to protect and leave the skin feeling soft and smooth.

In fact, our proven antimicrobial hand rinses, along with our “Go Ahead, Rub It In” in-service training and on-line CEU program, are all part of a system that works together to improve hand-washing compliance and utilization.

Learn more today. Call your Ecolab/Huntington representative at 1-800-352-5326.