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ABSTRACT

Objectives: To investigate and compare the incidence, geographical distribution, temporal patterns, and genetic relatedness of hospitalized patients with community-
acquired Clostridium difficile infections (CA-CDI) and healthcare-associated C. difficile infections (HA-CDI) in the Niagara Region, Ontario over the time of a large, multi-
hospital outbreak. 

Methods: We conducted a retrospective case series study of the consecutive hospitalized confirmed CDI cases between September 2011 and December 2013 using 
SaTScan statistics and Statistical Process Control.

Results: Using provincial guidelines on classification of C. difficile cases, we estimated that, of the 629 CDI cases, 318 were CA-CDI and 311 were HA-CDI. The rate per 
1,000 patient days for the entire study period for the hospitalized CA-CDIs was 3.9 CDIs/1,000 patient days and 3.8 CDIs/1,000 patient days for HA-CDIs. We identified 
spatial clusters for CA-CDIs using the first three digits of the patients’ home postal codes. A temporal cluster of HA-CDI was identified after a period of time when a high 
number of CA-CDI cases were hospitalized. Molecular typing was done on 6% (40/629) of patients that met study definition; 13 were CA-CDI and 27 were HA-CDI. The 
majority (44.4%) of the NAP1 strains (12 of the 27 tested) were seen in patients with HA-CDI. Various unrelated strains were also identified.

Conclusions: Geographical clustering, temporal features, and genotypic features of CDI cases appear to be unique to CDI cases in the community, compared to those in 
hospital. Nonetheless, understanding the potentially bi-directional transmission pathways between hospitalized CA-CDI incidence and HA-CDI manifestation, as well as 
the community drivers of CA-CDIs, can inform clinical and public health patient safety and prevention policies. 

KEYWORDS
Community and healthcare-associated Clostridium difficile; spatial; temporal; clustering

Acknowledgements: Special thanks to Infection Prevention and Control and Decision Support staff in the Niagara Health Service.
Conflicts of interest: None.
Funding: None.
Ethics approval: The protocol for this study was approved by York University’s Office of Research Ethics and Niagara Health Service’s Research Ethics Board.

Canadian Journal of Infection Control   |   Fall 2018   |   Volume 33   |   Issue 3   |   146-157

146

mailto:msalaripour@hotmail.com
mailto:msalarip@yorku.ca
mailto:mgardam@hrh.ca


Return to TABLE OF CONTENTS

INTRODUCTION
Clostridium difficile (C. difficile) has emerged as a significant 
source of infectious diarrhea beyond hospital settings, resulting 
in community-acquired C. difficile infections (CA-CDI) [1, 2]. 
The community reservoirs of CA-CDI remain unclear and many 
of those infected with CA-CDI do not have the conventionally 
established risk factors for healthcare-associated C. difficile 
infections (HA-CDI) [1, 3]. CA-CDI has been linked to various 
environmental sources such as floodwater, rivers, lakes, marine 
sediments, food, farm animals, and household pets [1, 4, 5]. 
Yet unlike other gastrointestinal infections, increases in CA-CDI 
rates in the northern hemisphere have not been associated 
with the warmer summer months [6-8]. Conversely, research 
to date has pointed to the increased use of antimicrobials in 
winter and spring months as a contributing risk factor in both 
CA-CDIs and HA-CDIs [9, 7]. 

Researchers also debate whether asymptomatic, previously 
hospitalized patients can be a source of transmission in the 
community and/or whether hospitalized CA-CDI plays a role 
in spreading the spores in hospital settings [10, 11]. In a bid 
to answer these questions, we investigated and compared 
the geographical distribution, temporal patterns, and genetic 
relatedness of CA-CDI and HA-CDI cases admitted to the 
Niagara Health System (NHS) between the summer of 2011 and 
the winter of 2013, during which period a series of C. difficile 
outbreaks occurred in the region’s hospitals. 

METHODS
Study design, study period, and setting
The design featured a retrospective case-series study 
of consecutive patients with confirmed CDI infections 
hospitalized in NHS hospitals between September 2011 and 
December 2013. NHS hospitals are the service providers for 
the Niagara Region in Ontario; they offer a wide range of 
programs and services to a catchment area spanning  
12 municipalities with a population of approximately  
430,000 [12].

Case definition, identification, data source, and privacy
Case definition and eligibility criteria followed the provincial 
guidelines for CDI prevention in healthcare settings [13], as 
reflected in NHS infection prevention and control (IPAC) 
policies (see Appendix A). 

Cases of CDI were identified after laboratory testing of stool 
samples from symptomatic patients. Daily surveillance by IPAC 
service personnel at NHS sites confirmed the laboratory testing 
results. Confirmed cases were then approved and finalized in 
consultation with an external infectious diseases and infection 
control physician.

Data for this study were aggregated in a central database. 
Data came from each of the NHS hospitals’ IPAC offices, 
administrative databases, and medical records. For more 
accurate data collection, expert personnel in the NHS Decision 
Support department conducted a retrospective query in its 
databases. Where data were missing, an electronic record 
review and a paper chart review were conducted using name, 

date of admission, and site-specific medical records numbered 
to match the records. A de-identified data set was used for 
final analysis.

C. difficile testing and strain typing methods
Between September 2011 and April 2012, all CDI samples 
were sent to an academic hospital laboratory that used DNA 
amplification technique to identify toxin-producing CDI 
strains. The BD GeneOhm™ Cdiff Assay had a sensitivity of 
93.8% and a specificity of 95.5% [14]. From April 2012 to 
December 2013, NHS sent the CDI samples to an external 
commercial laboratory that used a Nucleic Acid Amplification 
Test (NAAT), the BD MAX™ Cdiff Assay, with a sensitivity 
of 96.3% and a specificity of 92.4% [15]. The provincial 
reference laboratory performed strain typing of the C. difficile 
isolates using a pulsed-field gel electrophoresis (PFGE) 
technique, a standard National Medical Laboratory procedure. 

Statistical analysis
We stratified the CDI cases using CA-CDI and HA-CDI 
incidences. Data included CDI discreet count values, month 
and year of laboratory testing, the first three digits of the 
eligible CDI patients’ postal codes or forward sortation area 
(FSA), and total patient days for all NHS sites per month for 
rate calculation. Rate per 100,000 population was calculated 
for CA-CDIs, and rate per 1,000 patient days was computed 
for HA-CDIs. When needed, we used information on the 
Niagara Region’s population from Statistics Canada’s 2011 
census for data analysis. Monthly incidence measures were 
calculated and out-of-control ranges searched using Statistical 
Process Control (SPC).

Spatial Cluster Analysis
Complementing geographical distribution maps with spatial 
randomness statistical tests indicate whether the clustering is 
an act of chance or the result of an underlying risk factor. We 
performed a purely spatial and spatio-temporal scan of the 
CA-CDI and HA-CDI cases to test for the presence of patterns 
in their approximate geographical origin and conducted a 
space-time permutation study to identify clusters independent 
of time and location. The application of spatial Scan Statistics 
allows researchers to measure the significance and the 
location of a general or focused cluster [16] that subsequently 
leads to clues about the disease under investigation. Spatial 
scan statistics employ a likelihood ratio test to assess clusters 
of various sizes and adjust for multiple testing [17]. The 
Monte Carlo simulation of 999 randomizations of the data 
set ranks the likelihood of the cluster’s significance [18]. 
Focused clusters are detected based on multiple circular 
(or other shaped) windows of variable sizes, scanning the 
given geographical area for the variable of interest. The null 
hypothesis of equivalent risk inside and outside the circular 
scan windows is rejected when the number of cases inside 
the cluster zone is more than the expected number of cases, 
independent of the specific geographical locations and 
administrative boundaries.
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1. Purely spatial Scan Statistics for investigation of  
non-random clusters
Using a circular scan window centred on each possible point 
throughout the study area, this one-dimensional spatial Scan 
Statistic process compares the disease risk observed inside the 
window (cluster) with the risk outside the window (cluster). 
The most likely cluster has the highest likelihood ratio, with p 
values of 0.005 or less. 

2. Spatio-temporal Scan Statistics for investigation of  
non-random clusters
The space-time Scan Statistics identify clusters throughout the 
study region by scanning for cases using a cylindrical window, 
where the base of the cylinder centres on one of the multiple 
centroids within the study area. The cylinder’s height defines 
the time interval as a whole for the entire study period. The 
cylindrical window then scans the geographic base while 
changing the radius of the base as well as scanning for possible 
time intervals (changing the height of the cylinder). 

3. Space-time permutation Scan Statistics for investigation of 
independent clusters
This model identifies the increased risk of a disease or 
differences in geographical distribution at different times 
by adjusting for time and space. Therefore, the number of 
observed cases in a cluster is compared to the expected 
number of cases if all cases were independent of each other 
in terms of infection time and spatial locations. The ability to 
adjust for purely temporal clusters of this type of scan means 
that it can highlight the locally initiated clusters. 

For computation purposes, a Poisson distribution model 
was used while operating the SaTScan software. The first 
three digits of individuals’ postal codes were used to identify 
the locations or smaller geographical units within the overall 
study area. The time precision was set by the day. Temporal 
and geographical checks were in place to ensure that all cases, 
controls, and populations were within the study’s specified 
temporal period and geographical area. The maximum 
temporal cluster size was set for 50% of the study time and the 
maximum spatial cluster size was set for 50% of the study’s 
at-risk population.

Temporal Cluster Analysis
SPC charts to investigate out-of-control abnormalities  
and outbreaks
The SPC approach was used to provide information on 
unusual variations and exceptional changes in CDI infection 
rates between months and seasons [19]. Rare events of 
disease clustering in a given time period are best explained 
by the Poisson process [20]. Therefore, this analysis used u 
control charts for discrete data (numerator) with a varying 
size of monthly patient days (denominator) to monitor the 
total number of incidents per month [19, 21] . Although in an 
industrial environment the use of process control charts with 
±3-sigma control limit has been recommended (99.73% of all 
plot points in a normal distribution and stable process), use of 
a 3-sigma control limit has been questionable for healthcare 
[21]. Therefore, for epidemiological investigation of infections, 
more sensitive and less specific standards should be applied 
to increase the power and confidence of the “out of statistical 
control” state of CDI [20]. For this study, the control limits were 
set at ±2-sigma covering 95% of the plotted points; smaller 
variations in data could be identified, which, in practice, 
are signals for thorough epidemiological investigation [21]. 
Choosing a tighter control limit increases the rate of false 
positives or out-of-control points (type I error) to 5% for each 
plotted value (compared to 0.27%); this can also be clarified by 
epidemiological investigation.

Temporal Scan Statistics for investigation of non-random clusters
Scan Statistics identifies and evaluates clusters of cases in a 
purely spatial, purely temporal, or space-time setting [22]. A 
Bernoulli distribution is a 0/1 case-control type of binary data. 
To evaluate the temporal pattern of the CDIs and investigate 
non-random clustering, we used a purely temporal statistics test. 
HA-CDI were considered cases and CA-CDI were considered 
controls. Scan Statistics used multiple different window sizes 
to gradually scan across time and/or space and document the 
number of observed and expected observations inside the 
windows. The risk inside the clusters compared to outside the 
clusters, measuring for irregularity of the potential cluster, was 
based on a likelihood ratio [23]. The cluster that yielded the 
most extreme ratio was least likely to be by chance [23].

TABLE 1: Rate of hospitalized CA-CDI and HA-CDI for NHS hospitals between September 2011 and December 2013. 

2011 2012 2013
Overall rate for 

study period
Reported rates in 

other studies

CA-CDI 
(rate/100,000 
population)

14.84 33.22 25.5 11.6 [36]

HA-CDI (rate/1,000 
patient days)

3.7 3.36 4.34 3.83
0.3 in 2011 [29]

0.35 in 2012
0.33 in 2013
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FIGURE 1A

A purely temporal retrospective multivariate Scan Statistics 
was conducted, scanning for clusters with high rates using the 
Bernoulli model. The minimum temporal precision was set at one 
month and the maximum temporal cluster size was set at 50% 
of the study period. A maximum temporal cluster size limits the 
maximum size of the population at risk within the cluster to no 
more than 50% of the population at risk in the study [24, 16]. 

Random replication of the data set using computer 
simulation is a feature of Scan Statistics that adds to the 
power of the test. The number of replications under the null 

hypothesis for the standard Monte Carlo test was set at 999 to 
ensure statistical power for the Scan Statistic and the p-value 
calculation [22]. Under this setting, a high likelihood ratio 
rejects the null hypothesis and favours the clustering inside the 
scanning window(s) [22]. In this step of the temporal study, 
the null hypothesis assumed that the temporal clusters of 
hospitalized CA-CDI and HA-CDI occurred at the same time. 
The alternative hypothesis suggested the presence of clusters in 
hospitalized CA-CDI that did not show up at the same time as 
those in HA-CDI.

Purely spatial scan statistics of the cases of CA-CDI in the Niagara Region based on their FSA or the first three digits of the postal codes between September 1, 2011 
and December 31, 2013. Number of significant* clusters (in red) with high rates identified using discreet poison model (p<0.05). Five FSAs of the significant clusters: 
L3K: p<0.000; N = 26; log likelihood ratio: 8.879242
L2G: p<0.000; N = 30; log likelihood ratio: 7.155066
L2E: p<0.002; N = 25; log likelihood ratio: 6.371665
L2N: p<0.021; N = 31; log likelihood ratio: 4.754386
L3B: p<0.025; N = 24; log likelihood ratio: 4.477314
*A cluster is statistically significant when its log likelihood ratio is greater than the critical value, which is,  
for significance level Standard Monte Carlo Critical Values, 0.001: 7.924854; 0.01: 5.816313; and 0.05: 3.788838.

Legends:
 360 cities: Location of the panoramic cameras

  small blue squares: Photos of landmark places on Google Earth
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Test of seasonality
Using the additive seasonal cases, a seasonal mean of the absolute 
cases was calculated for each season to allow us to test for 
seasonality in our relatively small data sets. To find out whether 
seasonal properties have a role in the increase of CDI in certain 
periods, the time series data for both groups, CA-CDI and HA- 
CDI, were adjusted for a seasonal component [25]. Given the 
small number of seasonal points, an analytical approach was 
used rather than a graphical depiction of the seasonal influences, 
which is more common but mainly used for longer study periods. 

The additive seasonal indexes were calculated by subtracting 
the grand mean from each seasonal average. Subtracting each 
seasonal index from the associated seasonal measurement 
provided the seasonal adjusted values for each season [25]. 

Data were combined and stored in SPSS software, Version 
21.0 (IBM Corp., Armonk, NY) and Microsoft® Excel for Mac, 
Version 15.27(161010). To determine the spatial and temporal 
Scan Statistics, we used SaTScan version 9.4.4 64-bit [26, 22].  
Information on geocodes for FSAs was accessed from 
GPSVisualizer [27]. 

FIGURE 1B

Retrospective spatio-temporal scan statistics of the cases of CA-CDI in the Niagara Region based on their FSA or the first three digits of the postal codes between 
September 1, 2011 and December 31, 2013. Number of significant* clusters (in red) with high rates identified using discreet poison model (p<0.05), identified with 
an arrow. Nine FSAs of the significant* clusters were identified: 
L2M: p<0.000; N = 16; log likelihood ratio: 26.189012; L3C: p<0.000; N = 14; log likelihood ratio: 25.998135
L2N: p<0.000; N = 12; log likelihood ratio: 21.666917; L3K: p<0.000; N = 20; log likelihood ratio: 20.866021
L2G: p<0.000; N = 0; log likelihood ratio: 19.762781; L3B: p<0.000; N = 9; log likelihood ratio: 17.984835
L2E: p<0.000; N = 15; log likelihood ratio: 17.067404, L2J: p<0.000; N = 10; log likelihood ratio: 16.349787
L2V: p<0.004; N = 8; log likelihood ratio: 13.471642
*A cluster is statistically significant when its log likelihood ratio is greater than the critical value, which is, for significance level Standard Monte Carlo Critical Values, 
0.001: 14.909737; 0.01:12.850207; and 0.05: 11.177605.

Legends:
  360 cities: Location of the  

panoramic cameras
   small blue squares: Photos of  

landmark places on Google Earth
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We categorized the results of molecular testing for each 
category as discreet counts and as proportions of the total 
specimens tested. 

Ethics statement
The protocol for this study was approved by York University’s 
Office of Research Ethics and Niagara Health Service’s Research 
Ethics Board. This study entirely consisted of secondary data 
analysis of de-identified quality improvement patient data; 
therefore, the requirement for informed consent was waived. 

Results
A total of 1,051 CDI cases were identified through laboratory 
detection of toxins produced by C. difficile strains, 629 of which 

met the eligibility criteria; 318 (50.1%) were CA-CDI and 311 
(49.4%) were HA-CDI.

Table 1 lists the rate per 1,000 patient days for each study 
year for the HA-CDI category and the rate per 100,000 
population for the CA-CDI category. 

Spatial Scan Statistics
Figures 1A, 1B, and 1C provide the Scan Statistics of the 
purely spatial, spatio-temporal, and time-space permutations, 
respectively, of the hospitalized CA-CDI cases in the Niagara 
Region. Cluster (p<0.005) identification was based on their 
specimen collection date and their residential FSA information. 
The identified clusters have different geocodes, and the radii 
of the circular windows were set for 1 km for each cluster. 

FIGURE 1C

Retrospective space-time permutation scan statistics of the cases of CA-CDI in the Niagara Region based on the FSA or  
the first three digits of the postal codes between September 1, 2011 and December 31, 2013. Number of significant*  
clusters (p<0.05). Three FSAs of the significant* clusters: 
Location IDs included (L3K, L3B, L3C); p<0.000; N = 51, test statistic: 29.779385
Location IDs included (L2E, L2J, L2H, L2G); p<0.000; N = 45, test statistic: 19.770718
Location IDs included (L7T, L9A, L3M, L0R, L2R, L2N, L2S, L2M); p<0.000; N = 45, test statistic: 19.397479
*A cluster is statistically significant when its test statistic is greater than the critical value, which is,  
for significance level Standard Monte Carlo Critical Values, 0.001: 11.580870; 0.01: 9.198556; and 0.05: 8.144111. 

Legends:
  360 cities: Location of the  

panoramic cameras
   small blue squares: Photos of  

landmark places on Google Earth
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CA-CDI Scan Statistics identified five very localized, purely 
spatial clusters (p<0.05), with one FSA attributing to each cluster 
(Figure 1A). The clustering of CA-CDI cases in the Niagara 
Region was predominantly positioned in urban zones (Figure 1B). 
Upon further exploration and plotting of public dwellings and 
communal residences (such as nursing homes, shelters, schools, 
or group homes), we noticed multiple assisted-living supportive 
housing demarcations within the perimeters of the spatial clusters 
of CA-CDI. Figure 1C signals the CDI cluster areas based on the 
number of observed to expected cases. 

Time series analyses and SPC charts
Figures 2A, 2B, and 2C explore the time series pattern of 
CDIs in NHS hospitals. When the control limit is set at ±2 
sigma, the control chart for CA-CDIs indicates many months 
of higher-than-average CA-CDI rates with no out-of-control 
range. The control charts show an out-of-control period for 
HA-CDIs starting in January 2013 and lasting until April 2013. 
To confirm this result and to understand whether the increase 
in CA-CDI and HA-CDI cases co-occurred, we turned to 
purely temporal analysis. 

Temporal visualization of CDI cases in the Niagara Region. Comparison of time series trends of CA-CDI and HA-CDI patients hospitalized in NHS hospitals between 
September 2011 and December 2013.

SPC display of hospitalized CA-CDI rates per 1,000 admissions hospitalized in NHS hospitals between September 2011 and December 2013.

FIGURE 2A

FIGURE 2B
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SPC display of hospitalized HA-CDI rates per 1,000 admissions hospitalized in NHS hospitals between September 2011 and December 2013.

Purely temporal analysis scanning for clusters with high rates. A retrospective study of CDI cases in NHS hospitals between September 2011 and December 2013 using the 
Bernoulli model, SaTScan v9.4.4. Information on the detected temporal cluster: 
Time frame: 2012/12/01 to 2013/4/30; Log likelihood ratio: 12.027272; Monte Carlo rank: 1/1,000; P-value: 0.001
A cluster is statistically significant when its log likelihood ratio is greater than the critical value, which is, for significance level:
Gumbel critical values: 0.00001: 13.971596 and 0.0001: 11.659499; Standard Monte Carlo critical values: 0.001: 8.060346; 0.01: 7.215835; and 0.05: 5.575158

FIGURE 2C

FIGURE 3
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Temporal scan statistics
Figure 3 illustrates a cluster of HA-CDI that was identified 
between December 2012 and April 2013, following a period 
of high CA-CDI hospitalization. Identification of a cluster 
rejects our null hypothesis that the cases in hospitals and the 
community happened at the same time. Instead, cases acquired 

in the community occurred at a different time than those 
acquired in hospitals during the period of the cluster. 

Test of seasonality
The crude grand seasonal mean for the study period for all 
seasons was 35 for CA-CDIs and 36 for HA-CDIs. To better 

Crude and seasonality adjusted values for CA-CDI cases in the Niagara Region between September 2011 and December 2013. 

Crude and seasonality adjusted values for HA-CDI cases in the Niagara Region between September 2011 and December 2013. 

FIGURE 4A

FIGURE 4B
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understand the effect of the seasons as an influencing factor 
on the prevalence of CA- and HA-CDIs, we calculated the 
additive seasonal indexes and numerically plotted the computed 
seasonal effects for all seasons in the study period. Graphical 
evaluation of the crude and seasonally adjusted cases for CA- 
and HA-CDIs indicated a lower seasonal influence in the former 
than the latter (see Figures 4A and 4B). 

C. difficile strain typing
Overall, 6% (40/629) of the study cases were tested for 
molecular typing. 4% (13/318) of CA-CDI specimens were 
tested and PFGE identified various strains, including: 2/13 (15%) 
NAP1 strains; the rest (85%) comprised other unrelated strains 
(A, B, C, D, I, M, N). 9% (27/311) of the HA-CDIs were tested 
for strain identification: 12/27 cases (44%) were NAP1strain, 
2/27 (7%) were non-NAP1, and the rest (48%) were other 
unrelated strains (A, B, D, L, M, N, O, T, V). 

DISCUSSION
In our case series study, we found differences between the 
temporal patterns of the hospitalized CA-CDI and HA-CDI 
cases and a unique pattern of spatial distribution for CA-CDIs. 
Our study did not reveal a seasonality pattern for the CA-CDI 
cases and we discovered that cases of CA-CDI and HA-CDI 
were temporally independent. Although our study was 
conducted only on hospitalized patients with CA-CDIs, the 
overall incidence was notably higher for the Niagara Region 
(14.84 in 2011; 33.22 in 2012; and 25.5 in 2013) than for 
studies done in the UK in 2004 (22.0 per 100,000 population), 
Connecticut in 2006 (6.9 per 100,000 population), and 
Philadelphia in 2005 (7.6 per 100,000 population) [28]. 
Similarly, given the fact that it experienced many outbreaks 
during the study period, the Niagara Region's HA-CDI rates 
were markedly higher (3.83/1,000 patient days) than the 
average rates/1,000 patient days for the entire province of 
Ontario, which were 0.30 and 0.33 in 2011-12 and 2012-13, 
respectively [29].

Spatial clusters of CA-CDI in our study were indicative 
of substantial accumulation of community cases that were 
admitted to the NHS hospitals from urban zones. This is in 
contrast to recent studies, which suggest a positive association 
between environmental elements such as flooding [5], rainfall, 
exposure to agricultural structures (exposure to soil, livestock, 
or raw animal products), bathing in potentially contaminated 
watercourses, and an increased risk of CA-CDI [30-32]. On 
the other hand, the proximity to communal dwellings such 
as nursing homes has been recognized as a contributing 
factor to increased risk of CDI in the community. This may 
therefore support the possibility of CA-CDI cases originating 
from shared community residences such as assisted-living 
supportive housings. In Ontario, the Long-Term Care Homes 
Act (S.O.2007, c.8.) [33] and the Retirement Homes Act 
(S.O.2010, c.11) [34] specify the need for infection prevention 
and control training and practices in these settings, but the 
legislation does not pertain to other fast-growing communal 
dwellings, such as assisted living or supportive housing. 

The seasonal associations found in other CDI studies 
were not evident in our NHS study. Some of the studies that 
established a seasonal pattern suggest that the increase of 
CA-CDI in winter months can be attributed to the rise in 
antimicrobial prescribing practices during the influenza season 
[7, 35, 36]. However, reports of hospitalized and community-
based CDI in the southern hemisphere did not substantiate 
the previous claim and pointed to the increased incidence in 
summer months, where they assumed a role for imported fresh 
produce for this pattern [6]. In our study, lack of a seasonal 
pattern may be explained by the presence of C. difficile in the 
community through other reported sources such as retail meat, 
farm services, soil, pets, and domestic animals [37-42].

The purely temporal study of CA-CDI and HA-CDI cases 
established a hospital-associated cluster spanning from 
December 2012 to April 2013, where a rise in CA-CDI cases 
predated the HA-CDI’s temporal cluster (see Figure 3). One 
hypothesis could be that the asymptomatic carriage of HA-CDIs 
after discharge from NHS hospitals in the weeks or months 
preceding our study period might have contributed to an 
increase of CA-CDI patients in the community and their return 
to the hospitals to receive care. Another possibility is that 
the admission of non-suspected CA-CDI cases due to a lack 
of established risk factors upon admission to hospitals might 
have prompted HA-CDI outbreaks. Despite the moderate 
homogeneity between the HA-CDI strains that could point to 
a nosocomial transmission (12 of 27 were NAP1), more than 
half of the HA-CDI outbreak strains did not show a molecular 
relatedness. This may be explained by the introduction of 
multiple unrelated strains through direct or indirect contact with 
the CA-CDI patients admitted to NHS hospitals. 

Prospective CA-CDI surveillance, added to strain typing 
programs inclusive of CA-CDI and HA-CDI, can identify the 
transmission pathways and the unique risk factors associated 
with CA-CDI. Added to the traditional surveillance methods 
used in hospitals, community surveillance of CA-CDI can inform 
the discourse of this infection’s unique risk factors. In addition, 
research informed by geographical homogeneity can provide 
better understanding of the causal factors attributed to the 
infection’s community clustering. 

Our study was limited to hospitalized CA-CDI cases; we 
had no knowledge of the CA-CDI patients who did not need 
hospitalization. This limited the generalizability of our findings. 
Moreover, because we lacked access to the full postal code 
information, we could not document the precise location of 
the CA-CDIs. This reduced our ability to pinpoint the location 
of potential public sources of infection in the community. 
Furthermore, due to the short study period, the power of the 
seasonality analysis was limited and the identified patterns (or 
lack thereof) could have been influenced by multiple outbreaks 
during our study period. Our strain typing assessment was 
limited to those tested as a result of an outbreak investigation 
and composed a small proportion of all CDIs. The risk of 
misclassification of CDI cases in this study was reduced by using 
a comprehensive surveillance database, which was based on 
a case definition, case confirmation, and expert consultation. 
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Epidemiological evaluation by means of administrative and 
quality improvement databases allowed for a large-scale data set 
and reduced the risk of recall bias. 

The temporal independence of the CA- and HA-CDI cases, 
the higher-than-expected number of hospitalized CA-CDI 
cases, and the multiple reported HA-CDI outbreaks with a large 
proportion of unrelated molecular patterns all point to a possible 
association between the appearance of hospitalized CA-CDI 
cases and hospital outbreaks. Other studies have hypothesised a 
positive correlation between increased HA-CDI rates in hospitals 

APPENDIX A: NHS’ definitions of CDI, HA-CDI, and CA-CDI used between September 2011 and December 2013 for 
surveillance and case identification.

NHS Definition of CDI
• Diarrhea 
WITH
• Laboratory confirmation of C. difficile (e.g., by positive toxin A/B assay or PCR);
OR
• Visualization of pseudomembranes on sigmoidoscopy or colonoscopy;
OR
• Histological/pathological diagnosis of pseudomembranous colitis. 

 Definition of HA-CDI Definition of CA-CDI

An HA-CDI case is defined as a patient who has not had CDI in 
the past eight weeks but meets one of the following criteria:
•   They do not present with CDI upon admission but show 

onset of symptoms >72 hours after admission.
•   The infection was present at time of admission but was 

related to a previous admission to the same facility within 
the last four weeks.

A CA-CDI case matches the case definition for CDI and does 
not match the HA-CDI definitions. In other words:
•   CDI symptoms were present upon admission or symptom 

onset was less than 72 hours after admission.
•   No exposure to any healthcare facility occurred within the 

last four weeks, or the source of infection cannot be deter-
mined and the patient has not had HA-CDI in the last eight 
weeks.

and community prevalence and have suggested that hospital 
cases could be a driver of CDI in the community [10, 43, 44]. 
Some studies postulated a community reservoir as a potential 
attributing base for this infection into the hospitals [5, 39, 40]. 
Novel research programs that combine hospital and community 
findings can detect the direction of CA-CDI transmission. A 
better understanding of the epidemiology and the community 
drivers of CA-CDI will guide hospital and community patient 
safety policies, inform public health programs, and improve 
quality of health at a population level.
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